
Extending a Tool Resource Framework with U-Compare

Michael Rosner*, Andrew Attard*, Paul Thompson**, Albert Gatt*, Sophia Ananiadou**

*University of Malta, Dept ICS
Msida MSD2080, Malta

{mike.rosner, andrew.attard, albert.gatt}@um.edu.mt
** School of Computer Science

University of Manchester, Oxford Road
Manchester M13 9PLUK

{paul.thompson, sophia.ananiadou}@manchester.ac.uk

Abstract
This paper deals with the issue of two-way traffic between on the one hand, language resources that have been conceived from a local
perspective, i.e. from within a local project or institution, and on the other, a shared framework conceived from a global perspective
that supplies such resources for local re-use or enhancement. We believe that a key enabler to such traffic is the choice of an
appropriate sharing platform, and here we illustrate the point with respect to a constellation of EU projects that is attempting to
enhance the quality and scope of shared resources, and a local project that has some already-developed local functionality. The paper
first introduces the underlying projects, then goes on to discuss the proposed platform (U-Compare) whose use is then illustrated for a
small module developed for a local project.

Keywords: language resources, sharing, sharing platform

1. Introduction
Access to suitable Language Resources (LRs) is a sine
qua non for the development of Language Technology.
But LRs of the right kind do not always occur naturally
and frequently require LTs for their creation. The
preparation of an interestingly-large POS-tagged corpus,
for example, requires an accurate POS-tagger, unless we
happen to have an army of human specialists on tap,
which we assume is not the case most of the time. So one
cannot consider LRs in isolation from the LTs used to
create them. In fact the picture also includes a collection
of users from different sectors including academia and
industry who may themselves contribute content, as
shown in Fig. 1.

Fig. 1: Resources, Users and Technologies

This dynamic symbiosis between Resources, Users and

Technologies is reflected in the philosophy of the
Multilingual Europe Technology Alliance (META),
which forms the backdrop to the work described here. In
this paper we are focussed on the provision of tools as a
subclass of LRs spanning a range of functionalities
including automatic annotation, parsing, statistical
analysis etc. The notion of resources-as-tools is not new,
having first been proposed under the name BLARK
(Basic Language Resource Kit) by Krauwer (2003).
However, it has taken on a renewed importance as efforts
towards the development of language technologies
become ever more globalised.

One of the main problems when dealing with tool
resources is how to guarantee interoperability, both with
other tools, and with the data that these tools consume
and produce. As we shall explain below, one approach to
dealing with this problem is to ensure that all tools
operate within a single type system which defines the
type of all static data, and the input/output types (or
signatures) of all the tools.

Such a type system is fine if we are starting from
scratch, since everything can be designed to operate
within it, but typically this is not the case. A more usual
scenario is that we have a mix of tools and data that have
been developed at different times, for different projects,
in various states of readiness. We might, for example,
have a perfectly good parser developed for project A, but
in order to use it the grammar data which was developed
for project B has to be in a particular format. In short, if
we solve the interoperability problem by creating a type-
based framework, we are then faced with another
problem: how to deal with legacy resources and tools.

This paper concerns just such a problem. Roughly, we
have a collection of projects aimed at creating a shared
framework for the distribution of language resources in
general, and we have an under-funded local project which
has been running for some years which has nevertheless
developed some tool resources for Maltese. Now the
question is how to upgrade those resources and
incorporate them into the shared framework.

The structure of the paper is as follows: section 2
describes the background projects from which the work
has been conducted. Section 3 mentions MLRS, the local
project that has developed its own functionality. Section
4 is devoted to the proposed platform (UIMA and U-
Compare), and section 5 shows how the local
functionality can be integrated into the platform. The
discussion in section 6 assesses the possible impact of
proposed framework, and section 7 concludes.

2. The Project Constellation
The work reported in this paper takes place within a
constellation of EU projects that together are contributing
towards the realisation of META. The mission of the
Alliance is to further language technologies as a means
towards facilitating communication and cooperation
across language barriers. The constellation comprises
three language-resource-oriented projects:
METANET4U, CESAR, META-NORD, and a network
of excellence, META-NET, to which they all relate and
which to some extent ties them all together.

2.1 META-NET
META-NET is an EU-funded Network of Excellence that
supports META through three main objectives aimed at
(i) building a community with a shared vision, (ii)
building an open resource-sharing framework called
META-SHARE, and (iii) building bridges to
neighbouring technology fields. The work described here
has a direct bearing on the second of these objectives.

2.2 The Language Resource Projects
The three projects are similar in so far as they seek to
contribute to META-SHARE by targeting the upgrading,
extension, linking, and distribution of language resources.
They are also organised along more or less the same
lines, as elaborated below. They differ primarily in the
language groups handled by each. Broadly, METANORD
handles the Nordic Languages and CESAR, the
languages of Eastern Europe. METANET4U, with which
the present paper is mainly concerned, deals with
Spanish, Portuguese, Maltese, English and Romanian.

2.3 METANET4U
The work in METANET4U is split into a number of
tasks, each of which is distributed amongst the partner
Universities. The main responsibilities include:

(i) Analysis and Selection of Language Resources
(ii) Enhancing Language Resources
(iii) Cross National Collaboration and Pilot Service
(iv) Outreach, Awareness and Sustainability

In this paper, we are mainly concerned with (ii) and
(iii). Although most of the language resources that have
been selected for uploading to META-SHARE are
useable in some sense, there are various shortcomings
that have to be addressed.

For data-oriented resources, these include: cleaning
datasets, removal of inconsistencies, particularly where
this can be done automatically; ensuring that the data
complies with, or can be mapped to, a form that complies
with existing standards for character representation,
annotation using compliant tagsets etc.; improving
descriptive documentation, both informal (text
description) and metadata, developed according to a
standard developed for META-SHARE. Tool resources
present a different set of problems. Obviously, there are
operational bugs to be removed, but the most important
area of improvement concerns interoperability.

3. Maltese Language Resource Server
(MLRS)

The MLRS project (Rosner et al., 2008) was initiated in
1997, with the twin goals of creating a corpus for the
Maltese language, together with an associated machine-
readable lexicon. The project, which is ongoing, has been
intermittently supported by funding from different
sources1. The current version of the system, which was
released online2 (Gatt and Borg, 2011) in May 2011, is
centred around a text corpus of about 100 million words,
represented in a standard format and implemented using
the IMS Open Corpus Workbench (Hardie, forthcoming).
This provides for the definition of certain corpus-related
services which target Maltese linguistic research in the
first instance, and includes certain preprocessing steps,
which facilitate the translation of different input formats
into the standard representation, word frequency
calculations, and concordancing. POS tagging is currently
under development. The medium term aim here is to
gradually ascend the “semantic food chain” and to
include chunking, named-entity recognition, text
classification etc.

Presently, MLRS can be regarded as a tool with a fairly
high level of “macro” functionality that presents itself to
the user as a query engine over corpora that can be used
mainly for linguistic research. However, this
macrofunctionality is constructed from a number of
“microfunctionalities” - components that implement, for
example, tokenisation, sentence and paragraph splitting,
source document format translation, stop word removal,
POS tagging (eventually). The main problem, from the
perspective of META-SHARE, is that the interface does
not expose these microfunctionalities and so they are not
accessible individually.

The challenge we address is how to remedy this
situation - i.e. to retain the macro functionality whilst in
addition allowing the micro functionalities to be exposed
and reused within META-SHARE.

4. UIMA and U-COMPARE
Architecturally, the solution to this problem is a
framework that enables microfunctionalities to be
composed systematically.

In effect, such a framework has already been developed
for building powerful analysis techniques such as
information retrieval, information extraction, textual
inference, automated reasoning for “unstructured
information”, i.e. data lacking an accepted data model
which does not obviously fit into relational tables.
Unstructured Information Management Architecture3
(UIMA) is an architecture and software framework which
facilitates the integration of arbitrary components to work
in collaboration within the same application. This section

1 University of Malta and Malta Council for Science and
Technology
2 http://mlrs.research.um.edu.mt/
3 Apache UIMA is an Apache-licensed open source
implementation of the UIMA specification, which is
being developed concurrently by a technical committee
within OASIS (http://www.oasis-
open.org/committees/uima/).

gives an overview of the UIMA framework, and
following that an overview of U-Compare.

4.1 UIMA
UIMA makes it possible to put together a workflow of
different components, each of which would be
responsible for carrying out a specific type of analysis
over a document (text file, audio or video). Such
components are referred to as Analysis Engines (AEs).
AEs can be either primitive or aggregate. In the former
case, the AE would be hosting one annotator, whereas
aggregate AEs are defined to contain other AEs within
themselves.

The annotator itself is the constituent inside the AE
which contains the analysis algorithm. The annotator’s
role is to annotate regions within the document and to
create annotation objects of a particular type. For
example, a commonly used pre-defined UIMA type is
Annotation. This type is used to label regions within the
document, specifying the beginning and end position of
the region. These offsets are stored in the type’s features.
Features can be seen as properties associated with a
particular type. Thus, in the case of the annotation type,
two of its features are begin and end offsets. UIMA has a
set of such pre-defined basic types, and gives the
developer the possibility to extend these for a richer Type
System. Hence, AEs search within the document for the
types of objects defined by the respective assigned type
system. An important feature within the UIMA
architecture is the Common Analysis Structure (CAS).
Throughout the execution of the workflow, all the
generated annotations are recorded and shared amongst
the other AEs through the use of the CAS. So when we
talk about searching the document, we actually mean
searching within the CAS for objects that collectively
hold all information about the document in the form of
annotations.

It is easy to see how tools can be made to work
together given such a setup. In order to create a workflow
in which, for example, two tools are chained together so
that the output of one is compatible with the input of the
other. This is achieved by ensuring that input and output
expectations of the tools are observed with respect to the
CAS.

4.2 U-COMPARE
UIMA is a domain-independent framework. In order to
apply it to a specific domain, users need to create a type
system defining the data types used by tool resources.
Based on the UIMA framework, U-Compare4 defines just
such type system that is specifically oriented towards the
domain of text mining. A U-Compare compatible
component is a UIMA component which makes use of
the U-Compare type system, or extends its types, in order
to read objects from the CAS and to record and share
results.

4 U-Compare is a joint project between the University of
Tokyo, the Center for Computational Pharmacology
(CCP) at the University of Colorado Health Science
Center, and the National Centre for Text Mining
(NaCTem) at the University of Manchester.

U-Compare provides an integrated platform, currently
containing an extensive repository of ready-to-use natural
language processing components, all of which operate
within its compatible type system. Furthermore, through
an intuitive graphical user interface, the user is able to
construct, edit and compare the performance of different
workflows (Kano et al., 2009) - as suggested by its name.

Because U-Compare includes a considerable level of
language-handling functionality (and in fact currently
holds the largest single repository of type-compatible
UIMA components), it has been proposed by
METANET4U as a promising starting point for the
creation and distribution of LT tools within the META-
SHARE framework (Ananiadou et al., 2011). The
proposal is not without challenges, however. The U-
Compare type system has been designed for the text
mining domain. However, the demands of META-
SHARE are considerably more general, since the set of
resource types includes not just written resources, but
also audio, video and multimodal modalities as well as
more structured resources like lexicons and grammars.

Therefore, a major issue for investigation is the extent
to which the existing type system is the U-Compare type
system adequate. In this paper we report on a first
experiment that incorporate a small piece of the micro-
functionality of MLRS as a test case.

5. Integration
5.1 Converting Modules to UIMA Components
MLRS, mentioned in section 3, hosts an evolving set of
textual resources and natural language processing
services for Maltese. As an example, it currently includes
a tokeniser which has been specifically designed to
handle the peculiarities of Maltese tokenisation. Amongst
these we count, for example, the use of the hyphen,
apostrophe, clitic pronouns etc.

If METANET4U is to export a Maltese tokeniser to
META-SHARE, there would be considerable advantages
in making it U-Compare compliant in order to exploit the
advantages such as incorporation into workflows,
generation of statistics, comparison of performance etc.

MLRS	
Module

UIMA	 WrapperUIMA	 Wrapper

U-‐Compare	 Type	 System U-‐Compare	 Type	 SystemLocal	 Type	 System Local	 Type	 System

Fig. 2: UIMA Wrapper

In order to make the tokeniser compliant with U-

Compare, one can consider two options: either re-
implement the components or create a UIMA wrapper,
i.e. write code to map the U-Compare types to the local
types used by MLRS for input, and then vice versa for
outputting tokenisation results. In this case and in
general, reimplementation is undesirable, so we need to
look at the UIMA wrapper solution. This is depicted in
Fig. 2.

The MLRS tokeniser being considered makes use of a
sentence splitter for Maltese and then tokenises each
sentence. The existing tokeniser reads the data to be

tokenised from a file, executes the tokenisation task, and
writes the result to an XML file.

The new component (the outer box in Fig. 2) will need
to be modified with regards to its input and output
requirements; but the main computation of the component
will remain the same. Hence, instead of reading the input
from a file, the component will now retrieve it from the
CAS, and instead of writing the results to a file, the
component will now write the results to the CAS again.
This will enable the components executing later in the
workflow to use these results by reading them from the
CAS.

As explained in The Apache UIMA Development
Community (2010) the steps which need to be completed
are:

1. Define the CAS types the annotator will use
2. Generate the Java classes for these types
3. Write the actual annotator code
4. Create the AE descriptor

Since our component needs to be U-Compare

compatible, steps 1 and 2 are already done. The annotator
will be making use of the U-Compare type system, and
the corresponding Java classes are already implemented.

Step 3 is where the type conversion comes in.
Assuming that a tokeniser instance would take as input a
string containing the whole document, this method would
(i) retrieve the document from the CAS, and store it in a
string variable, (ii) create an instance of the tokeniser and
(iii) pass the string as argument.

Since the document object obtained from the CAS is
now converted to a string – the type which the tokeniser
was already using for computation – now the execution
could take place normally. Upon completion of the
tokenisation, for each token identified: (i) a U-Compare
token object is instantiated (ii) begin and end offsets of
the token are set, corresponding to its position in the
document and (iii) the token object is added to the CAS.

Step 4 involves writing the AE descriptor. This is an
XML file which specifies the component’s properties and
requirements, and which could be easily completed using
UIMA pluggable tools for Eclipse5.

Here we specify (i) that the AE is subscribed to the U-
Compare Type System, (ii) the location of the tokeniser
(iii) its input and output capabilities, i.e. the input would
be left empty, since the component would retrieve the
whole document, rather than some specific types and the
output would correspond to U-Compare token object,
hence it would be of type Token.

We have carried out these steps successfully for the
MLRS tokeniser, which means that, in principle, we have

5 A Java Integrated Development Environment
(http://www.eclipse.org/)

shown how the MLRS tokeniser can be made available
within U-Compare without any change to the U-Compare
type system. Furthermore, if the UIMA framework is
accepted within META-SHARE, we have also
demonstrated a basis for extending the functionality of
the latter.

6. Discussion
In order to assess where we go from here, we need to take
a step back. We have to bear in mind that MLRS has been
conceived locally, and that local functionality has been
developed, as exemplified by the tokeniser. This
functionality is now in principle available to META-
SHARE i.e. to anybody wishing to tokenise documents
written in Maltese.

We envisage two-way traffic between modules
developed locally and those available through META-
SHARE. Hence, where appropriate, not only should the
results of local developments be made available to
META-SHARE, as we have seen with the tokeniser, but
also, where appropriate, components available through
META-SHARE should be freely available for the
development of local functionality.

MLRS currently includes a POS tagger, but there are
two major shortcomings: (i) it is not very accurate and (ii)
the architecture is monolithic. We envisage that the first
problem will be solved by providing better training data,
and an effort to address this is currently under way. We
are proposing to address the second problem using the U-
Compare framework involving a UIMA workflow.

Fig. 3 shows a possible UIMA workflow, consisting of
four components, for implementing such a POS tagger.
The labels on the arrows name the corresponding U-
Compare types. Source Document Information (the first
input) is the document which is given as input to be
analysed. The components’ outputs are all U-Compare
types.

The advantage of such an arrangement is that the each
individual component is reusable and exportable. The
realisation of such a workflow could be achieved in a
number of different ways.

• The individual modules could be fashioned from
already existing MLRS components. For
instance, the underlying functionality of the box
marked POS tagger already exists. However, it
needs to be wrapped in the manner described in
Fig. 2.

• The individual modules could be imported from
META-SHARE. In this case the drag and drop
interface available within U-Compare can be
used to insert the respective processing element
into the workflow

Paragraph	
Splitter

Sentence	
Splitter

Source	 Document	
Information

Paragraph
Type

Sentence
Type Tokeniser Token

Type
POS
Tagger

POS
Token

Fig. 3: POS Tagger Workflow

Alternatively some mixture of these two approaches
might be used to develop a new, U-Compare-compatible
processing element involving an interaction between
existing processing elements that cannot be easily
constructed in terms of a workflow.

An example of this might be a Named Entity Tagger
for Maltese (which in fact we are planning to develop in
future). One could imagine that the construction of such a
tagger might not involve just a pipeline of existing
processes - but more complex interactions between , say,
an (existing) POS tagger, a locally produced gazetteer
linking names and to entities, and a (shared) semantic
classifier for distinguishing between locations and
organisations using sentence context. In such a case, it
could prove most efficient to simply program the
interaction in terms of the underlying platform and create
a new module for subsequent export to META-SHARE.

Before concluding, as already pointed out, ongoing
work is currently focusing at increasing the number of
Maltese tool resources. Since the study carried out in this
paper revolves around available resources, this
conversion procedure was necessarily carried out on a
fairly simple component. However, other more
sophisticated components have been successfully
wrapped up to be U-Compare compliant, including
corpus readers, as well as semantic and syntactic tools6,
and we propose to adopt this methodology to other
components for Maltese as and when they are developed.

7. Conclusion
We have presented a project cluster which aims to
improve LT across a wide range of languages by
developing, amongst other things, a framework for
sharing language resources and LT tools. We have
illustrated how U-Compare can be used to elevate the
status of an existing module from something strictly
internal to something that can be shared by the
community at large. Conversely, we have suggested that
in future, the adoption of a framework like U-Compare
can be used to facilitate the creation of new functionality
by adopting a mix and match approach which freely
draws from shared and locally produced modules, thus
contributing to the shareable resources.

8. Acknowledgment
The work described above has been carried out under the
auspices of the METANET4U project jointly funded by
the EU (grant number 270893) and the Universities of
Malta and Manchester.

References
Ananiadou, S., Thompson, P., Kano, Y., McNaught, J.,

Attwood, T. K., Day, P. J. R., Keane, J., Jackson, D.
and Pettifer, S. (2011). Towards Interoperability of
European Language Resources. Ariadne, 67.

Ferrucci D, Lally A, Gruhl D, Epstein E, Schor M,
Murdock JW, Frenkiel A, Brown EW, Hampp T,

6 Navigate to
http://u-compare.org/components/index.html for the full
list of U-Compare components

Doganata Y., "Towards an Interoperability Standard
for Text and Multi-Modal Analytics". IBM Research
Report RC24122 2006

Gatt, A. and Borg, C., Using the MLRS Interface,
Institute of Linguistics, University of Malta, 2011.
Available at
http://mlrs.research.um.edu.mt/corpusquery/cwb/doc/m
lrs_userdoc.pdf

Hardie, A. (forthcoming). "CQPweb - combining power,
flexibility and usability in a corpus analysis tool".
http://www.lancs.ac.uk/staff/hardiea/cqpweb-paper.pdf
(draft)

Kano Y., McCrohon L., Ananiadou S., Tsujii J. (2009).
Integrated NLP Evaluation System for Pluggable
Evaluation with Extensive Interoperable Toolkit. In:
Proceedings of the NAACL HLT Workshop on Software
Engineering, Testing, and Quality Assurance for
Natural Language Processing, Boulder, Colorado,
Association for Computational Linguistics, pp. 22-30.
Boulder, Colorado, Association for Computational
Linguistics.

Kano, Yoshinobu, William A. Baumgartner Jr., Luke
McCrohon, Sophia Ananiadou, K. Bretonnel Cohen,
Lawrence Hunter and Jun'ichi Tsujii U-Compare:
share and compare text mining tools with UIMA.
Bioinformatics. 25(15), pp. 1997-1998, 2009; doi:
10.1093/bioinformatics/btp289

Krauwer, Steven, The Basic Language Resource Kit as
the First Milestone for the Language Resources
Roadmap, Survey Lecture delivered at SPECOM,
October 2003, Moscow, (also available at
http://www.elsnet.org)

Rosner, M., Caruana, J., and Fabri, R., Maltilex: A
computational lexicon for maltese. In M. Rosner,
editor, Computational Approaches to Semitic
Languages: Proceedings of the Workshop held at
COLING-ACL98, Université de Montréal, Canada,
pages 97–105, 1998.

