
METANET4U

Overview

 Introduction

 Overview of UIMA & U-Compare

Frameworks

 Aim of work

 Extending & creating compatible Components

 Demonstration

Introduction

 METANET4U

 Natural Language Processing
 Combination of Computer Science & Linguistics

 Workflow of components
 Example: Named Entity Recognition

Laguage
Identifier

Tokeniser
Part of Speech

Annotator
Shallow Parser

Named Entity
Annotator

UIMA

 Unstructured Information Management

Architecture (UIMA)

 Unstructured Information

 Analysing unstructured content

 Cumbersome to connect arbitrary tools

UIMA Architecture Overview

 Analysis Engines – UIMA’s basic
building blocks

 Analysis Results

 E.g.: The span from position 101 to 112 in
document D102 denotes a Person

 Annotators – holding the core analysis
algorithms

UIMA Architecture Overview

 Common Analysis Structure (CAS) –
object-based data structure

 Type system – an object schema for the
CAS
 Features – defining properties of a Type

 Annotation Type – general Type used in
artefact analysis
 Being & end features

UIMA Solution

 Developing a UIMA solution:

 Define the CAS types that the Annotator will use

 Generate Java classes for the CAS types

 Write the actual Annotator Java code

 Create the Analysis Engine descriptor

 Test the Analysis Engine

Enhancements

 What is this architecture missing?

 Compatible type system

 Basic NLP functionalities

 User Interfaces for humans

U-Compare

 Joint project between:

 University of Tokyo,

 University of Colorado Health Science
Centre, and

 University of Manchester

 Largest collection of ready-to-use UIMA
components

 Easy to use Graphical User Interface

U-Compare Features

 Drag-and-drop components to build

workflows

 Comparison of components and

workflows

 Exportation of workflows

U-Compare Component

 U-Compare component compatibility

 Common type system to achieve
interoperability

 UIMA component with U-Compare Type
System

 Types rather than String fields (e.g. POS
token)

U-Compare Component

 Developing a U-Compare Component

 The Annotator would make use of the U-Compare
type system

 The Java classes for the CAS types are provided by
U-Compare

 Write the actual Annotator Java code

 Create the Analysis Engine descriptor

 Test the Analysis Engine

Our tools for U-COMPARE

 Splitters

 Paragraph Splitter

 Sentence Splitter

 Tokeniser

 Part of Speech Tagger for Maltese

Adapting Existing Tools

 Extracting core functionality

 Wrapping existing tools to be compliant

with U-Compare Type System

Paragraph Splitter Annotator

Example

 Simple example – extracting core

functionality

 Using U-Compare Type System

 Setting Annotation Features

 Adding to the CAS

Paragraph Splitter Code

public void process(JCas aJCas) throws

AnalysisEngineProcessException {

String txt = aJCas.getDocumentText();

String regex = "(^.*\\S+.*$)+";

Pattern paragraph = Pattern.compile(regex, Pattern.MULTILINE);

Matcher matcher = paragraph.matcher(txt);

int pos = 0;

while(matcher.find(pos)){

org.u_compare.shared.document.text.Paragraph paragraphAnnotation =

new org.u_compare.shared.document.text.Paragraph(aJCas);

paragraphAnnotation.setBegin(matcher.start());

paragraphAnnotation.setEnd(matcher.end());

paragraphAnnotation.addToIndexes();

pos = matcher.end();

}

}

Demonstration

Questions

Thank you

