
Multilingual Linguistic Workflows

Dan Cristea1,2, Ionuţ Cristian Pistol1

	

1 Faculty of Computer Science, University “Al. I. Cuza” of Iaşi, Romania
2 Institute for Computer Science, Romanian Academy, Iaşi, Romania

{dcristea,ipistol}info.uaic.ro

1. Introduction

The field of Natural Language Processing (NLP) has seen
important developments over the later years, most significantly in
efforts intended to raise the quality and quantity of resources, to
enhance the performance and diversity of tools and to open
accessibility to both resources and tools as largely as possible. The
demands of multilinguality at the level of language technology
impose the necessity of reusing for different languages the
processing modules performing specific linguistic tasks. The
language a module is able to interpret becomes thus commanded by
the resources it is fuelled with. Such a view on interoperability
requires a standardization of the processing steps and an efficient
building and execution of workflows.

But the issue of language technology addressing the needs of
multilinguality has a lot more facets then strict reusability of
resources and tools, as for instance, the easiness of adopting
resources in resource-poor languages from resource-rich languages,
abstracting the ways in which language dependency issues are
regarded in approaches involving language processing tasks, or a
uniform way of looking at annotations schemas provided by
different schools and overpassing language barriers.

Standardization of metadata formats and of the NLP software
were, among others, the goals of projects such as CLARIN1 and

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1 http://www.clarin.eu/external/

FLaReNET2, as well as several national and international
workshops and conferences. Meta-systems, capable to offer to a
diversity of users access to libraries of processing modules, as well
as interfaces that help building complex processing architectures
out of these modules, are two of the most wanted behaviours in the
NLP field. Systems, such as GATE3 (Cunningham et. Al, 2002) and
UIMA4 (Ferruci and Lally, 2004), and research efforts such as
PANACEA5 and “Heart of Gold”6 represent some of the most
prominent efforts in this direction.

Almost all of the most influential NLP frameworks respond very
well to requirements specific to different languages. To take just
one notorious example, UIMA is used as an integration and
unifying framework in many multilingual projects. The project
ATLAS7, for instance, builds complex processing chains that
perform translation and summarisation of documents in 7
languages: Bulgarian, Croatian, English, German, Greek, Polish
and Romanian, and uses UIMA as a compatibility standard.
Another project, METANET4U8, among other things, updates,
enhances and disseminates a large spectrum of language resources
and tools in at least 6 languages: Catalan, English, Spanish,
Maltese, Portuguese and Romanian (Branco et al., 2011), and
UIMA is there also in the central interest of the consortium. More
and more resources in more and more languages are accumulated
and/or advertised on big portals9. The more numerous these
resources will be, the bigger the need of interconnectivity in
complex multilingual applications.

ALPE (the Automated Linguistic Processing Environment) has
been reported (Pistol and Cristea, 2009; Pistol, 2011) as being a
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2 http://www.flarenet.eu/
3 http://gate.ac.uk/
4 http://uima.apache.org/
5 http://www.panacea-lr.eu/en/
6 http://www.delph-in.net/heartofgold/index.html
7 PSP-ICT grant #250467, http://www.atlasproject.eu/atlas/project/en
8 PSP-ICT grant #27089, http://www.meta-net.eu/projects/METANET4U/
9 See, for instance, the META-SHARE initiative of the META

consortium.

format representation and processing environment which makes use
of annotation schemas arranged hierarchically in a hyper-graph in
order to compute automatically workflows out of a pool of
processing components. The model, called the Formats and
Modules Hierarchy (FMH) is designed to help users to build
complex processing architectures, by involving minimum of expert
skills.

Although rather well studied from different perspectives (Pistol,
2011), the FMH model has potentials yet unexplored sufficiently
attaining the multilingual aspects of language processing. In this
paper we describe the FMH model with a special emphasis on its
capacities to deal with multilingual aspects of linguistic processing.

The paper is organised as follows. Section 2 shortly presents the
FMH model and section 3 shows how processing flows are treated
in the model. The next two sections discuss in detail a couple of
applications, with the emphasis on the model’s capacity to handle
the specific needs of multilinguality, and the last section presents
conclusions and further work.

2. The Formats and Modules Hierarchy

In NLP applications, very often, a task is accomplished through
a pipeline of chained linguistic processing modules, each adding a
supplementary level of details to the data it receives in the input. In
certain cases, a processing chain can fork, such that independent
processing be performed in parallel and the results, when
accomplished on all branches, be collected on a common file. At
times, it could also be necessary a certain pruning of the notations
accumulated in the intermediate files, in order to get rid of some
bookkeeping notations and to retain only the data relevant for the
following steps. Conversions could also be applied to intermediate
files in order to make them compatible to the format accepted by
the subsequent modules. In all these cases, the intermediate results
take the form of notations applied to text files (marked in XML,
Lisp, table forms, etc.).

For reasons of space, we give here only a brief description of the
model, further details being found in (Cristea et al., 2006; Cristea
and Pistol, 2009). At the core of the FMH model stays a hyper-
graph, with nodes being abstractions of annotation formats (called
schemas) and edges corresponding to various linguistic and
conversion tasks. Simplifications are realized always along reverse
directions of linguistic edges, sometimes even short-circuiting more
processing steps. They are not explicitly marked on the hyper-
graph, but are seen by the navigation algorithm when searching for
workflows. Conversions neither add nor delete information and, as
such, are specially marked edges. Hyper-edges appear when two or
more annotation schemas can be merged to produce one that
includes all common information, as well as all specific information
of the contributing nodes. In this case, the destination node of the
hyper-edge is called a merge node. A path in a hyper-graph links a
start node to a destination node and corresponds to a processing
workflow. It may include linguistic processors, simplifications,
conversions and merges.

The constituent bricks of the annotation schemas are:
 a list of tags (element names in XML, list names in LISP,

etc.);
 the specific attributes describing each annotation tag

(attributes of an XML element, fields of a list in LISP, etc.);
 any restrictions the annotation tags and their attributes

should observe, for instance, if a tag can be found only if paired
with another one, or if it is always nested in another tag.

Although annotation schemas can support other formats than
XML, it is easily arguable that these can be mapped (losslessly) to
XML equivalents, for instance by considering the class identifiers
(or table names in relational databases) as XML elements and the
attribute-value pairs (specified features) as XML attribute-values.
This is a frequent assumption made whenever conversions are
performed between non-XML and XML formats. As such, our
discussions below will be drawn on examples considering only
XML formats.

As said, in the FMH hyper-graphs, nodes represent the
annotation formats. Edges between nodes are originating in two

sources: the subsumption relation (Cristea and Butnariu, 2004) and
the conversion relation. The definition of the subsumption relation
is adapted from the notion of subsumptions between feature
structures (for instance, Gazdar and Mellish, 1989): a format A
subsumes a format B (A⊆sB) if B includes all elements and
attributes of A, possibly also additional data (element names and
attributes). Also, all annotated documents observing the restrictions
described by the format B also observe the restrictions described by
A. For example, for A⊆sB, Figure 1 shows two XML annotated
documents, the first conforming to a simple format (A), the other to
a slightly more complex format (B).

As such, if two documents represent the same hub text and their
XML annotation conform to two schemas A and B which are in a
subsumption relation A⊆sB, then they are comparable, in the sense
that the one corresponding to B includes all the information that the
document corresponding to A has (possibly also something more).
The subsumption relation is anti-symmetric, reflexive and transitive
and the strict subsumption is anti-reflexive.

<document>

<tok id="1">This</tok>

<tok id="2">is</tok>

<tok id="3">an</tok>

<tok id="4">example</tok>

<tok id “5”>.</tok>

</document>

<document>

<seg id=”1”>

 <tok id="1" pos=”p”>This</tok>

 <tok id="2" pos=”v”>is</tok>

 <tok id="3" pos=”d”>an</tok>

 <tok id="4" pos=”n”>example</tok>

 <tok id=“5” pos=”m”>.</tok>

</seg>

</document>

A B	

Figure 1. Documents observing the restrictions of A and B, where A⊆sB.

Among all pairs of schemas which are not comparable, one class

distinguishes, namely schemas sharing the same semantic content,
although in different forms. As such, if two schemas C and D
represent the same information in different formats, a document
corresponding to C has neither more nor less information than the
one corresponding to D (when both documents share the same hub
text). In this case we say that the nodes corresponding to C and D
are in a conversion relation. The conversion relation is symmetric,
reflexive and transitive.

Originating in these two distinct types of relations characterising
pairs of nodes in the hyper-graph, the model defines four types of
edges, all directional:

 Processing edges are found between all nodes A and B
which are in a subsumption relation, namely A⊆sB, and such that

Figure 2: Multiple processing modules attached to the same processing
edge

	

…	

p1	 requirements	

module	 p1	

input	 observing	
format	 A	

output	 observing	
format	 B	

p2	 requirements	 	

	 	

module	 p2	

input	 observing	
format	 A	

output	 observing	
format	 B	

A	

B	

p1,	 p2,…,pn	

the model knows about at least one processing module (called also
a pipeline module) accepting as input the format A and producing
as output the format B. This means that if a file conforming to the
format A is available, the format B can be obtained after processing
the file with the corresponding processing modules. Modules
attached to the same edge can differ in terms of language
restrictions, costs and/or running peculiarities, by the resources they
require (as seen in Figure 2), etc. The direction of the edge is from
A to B.

 Simplification edges are implicitly considered between all
nodes B and A, where A⊆sB. This means that if the format B is
available, the format A can be satisfied by removing the additional
data in B (thus, simplifying B to A). The direction of the edge is
from B to A.

 Merge edges: a hyper-edge connects a set of formats (A1,...,
Ak) to another format B, which has the property of being the
minimal upper bound of A1,..., Ak (considering strict subsumption
as an ordering relation). Thus, all annotation information in any of
A1,..., Ak, can also be found in B and there is no piece of
information in the format B which could not be found also in at
least one of the formats A1,..., Ak. Speaking in terms of documents
conforming to these schemas, if fA1,..., fAk are files observing the
formats A1,..., Ak, all sharing the same hub text, then a file fB
observing the merging format B can also be generated. The
direction of the hyper-edge is from A1,..., Ak to B.

 Conversion edges are found between all nodes A and B
which are in a conversion relation and such that the model knows
about at least one processing module accepting as input the format
A and producing as output the format B. The difference between
processing and conversion edges resides in the nature of the
transformation module. If the transformation does not modify the
nature of the information in the input, but rather puts it in a
different form, then we are in the case of a convertor (wrapper) and
the edge linking the input to the output format is of a conversion
type. In general, if a convertor can bring format A to format B, then
there should exist a convertor performing the reverse
transformation. The direction of the edge is from A to B.

In all the figures displaying FMH hyper-graphs in this paper
subsumption relations to whom correspond processing modules are

indicated as arrowed thin full lines; when there is no processing
module along a subsumption relation the edge is indicated as an
arrowed dotted line; simplification edges are sometimes shown as
arrowed interrupted lines; merge hyper-edges are drawn as thick
arrowed lines connecting a group of nodes surrounded by an oval to
a destination node; and conversion edges are marked (not appearing
in this paper) as double lines arrows.

3. FMH processing flows

A processing flow is a sub-graph of a FMH hyper-graph which
includes all and only the nodes and edges on a path linking a pair of
nodes, called start and destination, in the direction of the edges.
The path may include all the four categories of edges: processing,
simplification, merge and conversion. Given a pair of nodes start-
destination on a FMH hyper-graph, there could be found none, one
or more processing flows. A processing flow models a possible set
of processing activities, which, if applied to a hub document, can
transform it from the format of the start node to the format
corresponding to the destination node.

Flows are directed paths and, as no two edges between the same
nodes and with the same orientation can exist in FMH, there is no
ambiguity in describing flows as sequences of nodes. Some
examples of flows on the FMH of Figure 3 are:

 start=A, destination=C1: the flow includes the pipeline
edges a and b traversing the sequence of nodes (A, B, C1);

 start=C2, destination=A: the flow includes a simplification
edge connecting the nodes (C2, A);

 start=A, destination=D: the flow includes two pipelines,
a+b and c, and a merge hyper-edge to combine two intermediate
formats, and traverses the nodes ((A, B, C1), (A, C2)), D).

To describe processing flows, the following notations will be

used:
 A >a B designates the use of a pipeline module a linking

nodes A and B (reads “A pipelines to B by a”);
 B < A designates the use of a simplification process

between nodes B and A (reads “B is simplified to A”);
 (A1, ..., Ak) > B designates a merge process between the

hyper-node (A1, ..., Ak) and B (reads “A1, ..., Ak merges to B”). The
same notation applies if some or all of the terms of the merge are
flows instead of simple nodes. In this case, instead of a node X, a
whole flow having as destination the node X is noted in the merge;

 AaB designates the use of a conversion module a linking
nodes A and B (reads “A converts to B by a”);

c	 b	

a	

D	

C1	 C2	

A	

B	

Figure 3: A simple FMH for flow exemplification

a	

b	

c	

The examples put in evidence above on Figure 3 are noted as
follows:

 A >a B >b C1
 C2 < A
 (A >a B >b C1, A >c C2) > D

A processing flow may be further characterized by several
features, among which are flow length and flow density:

Flow length measures the total number of edges of the flow.
This feature gives a rough estimation of the effort necessary to
execute the flow. However, some of these edges represent
operations performed by the model intrinsic machinery
(simplifications, merges, conversions) and, as such, do not
presuppose adding of information, i.e. processes. Then, flow density
gives the number of processes involved in the flow. When the flow
length differs significantly from the flow density it means that a
great part of operations are performed by the model.

The flow computation algorithm in FMH produces all flows that
link the start and destination nodes in the hyper-graph, not just the
shortest path. The differences among processing flows stay not just
in the number of processing steps involved but in a larger set of
factors, some reflecting technical aspects and some reflecting the
users’ personal preferences. All usable processing flows are offered
to the user, together with measurable parameters and other available
data. Going further in the particularisation of flows and as we will
see further in the examples of the following two sections, the flows
themselves are not sufficient to define the intended processing. In
many cases, the processing edges have associated more pipeline
modules (Figure 2), among which only one has to be chosen and
sometimes complex conditions need to be verified by the input and
output files. The conditions can be expressed as compatibility
restrictions of the input file with the start node, of the destination
node with the task specifications, as language restrictions,
momentary availability of web services, costs, software and
hardware configuration constraints, users’ access rights, cost
constraints, etc. The verification of all these conditions and the
selection of proper modules on pipeline and conversion edges
should be done before a flow is actually executed and is realised in

the instantiation of the flow. More instantiations of a flow are
possible. The conditions checked for each module are different than
those encumbered by input/output formats, which are intrinsically
validated by the flow.

The intention in displaying the examples in the following
sections is to show that common multilingual scenarios as well as
complex applications can be modelled in FMH.

4. Performing part of speech tagging

Part of speech tagging (further referred to as POS tagging) is a
common pre-processing step for most linguistic workflows. There
are multiple tools available for this task, many of them being
capable to change the language they work for when fuelled by a
language specific resource (usually a language model trained on
gold corpora). The significance of the nodes in the FMH graph of
Figure 4 is not important for the purpose of this example, and we
will ignore their description here. All we should know is the start
and destination nodes and these are: TXT, corresponding to the
original text including no annotations, and respectively POS, which
should be understood as including only POS information.

We have not marked the processing edges of Figure 4 with
actual names of processing modules. Rather, we have noted the
modules’ language compatibility constrains: ENi for English, ROj
for Romanian and LITk designating Language Independent Tools,
therefore tools compatible with any language.

One way to look at FMH is as a methodology of processing
which augments and, at times, simplifies the annotation added to a
text along a processing chain, thus advancing the representation
towards the envisioned output. As it appears on Figure 4, there are
multiple flows (paths) between the input node (TXT) and the output
node (POS), differing both in the number of steps and in language
restrictions.

In the multilingual use-case we will first describe two linguistic
workflows that have the same pair of nodes start-destination, but

displaying different paths, as put in evidence by different language
specific tools. This leads to different number of processing steps for
the two workflows. Figure 5 shows the hierarchy of Figure 4, in
which a language filter, specifying as processing language
Romanian, has been applied.

Two alternative flows bring an input document in Romanian
from TXT to POS, the traversed nodes being:

(TXT, PAR, SENT, TOK, T+POS, POS)
and (TXT, S-MORPH, POS).

The instantiated processing flows are:

EN3	

RO2	

LIT3	

EN2	

LIT1	

RO1	

EN1	

TXT	

Figure 4: A hierarchy doing POS tagging

PAR
A	

TOK	

POS	

S-‐MORPH	

LIT2	

S+POS	
T+POS	

SENT	

1. TXT>LIT1PAR>LIT2SENT>LIT3TOK>RO2T+POS<POS
2. TXT>RO1S-MORPH<POS

Figure 6 shows three alternative flows bringing an input
document in English from TXT to POS. The traversed nodes are:

(TXT, PAR, SENT, TOK, T+POS, POS)
(TXT, PAR, SENT, S+POS, POS)
and (TXT, POS)

The instantiated processing flows are:

1. TXT>LIT1PAR>LIT2SENT>LIT3TOK>EN3T+POS<POS
2. TXT>LIT1PAR>LIT2SENT>EN2S-POS<POS
3. TXT>EN1POS

RO2	

LIT3	

LIT1	

RO1	

TXT	

Figure 5: The workflow doing POS tagging for Romanian

PAR
A	

TOK	

POS	

S-‐MORPH	

LIT2	

T+POS	

SENT	

The examples above put in evidence also an interesting situation
found in multilingual applications: parts of workflows can look
identical (for two different languages) in terms of processing steps.
Compare, for instance the first resulted instantiations of each of the
Romanian and English cases above: the first 3 steps (noted here
>LIT1, >LIT2 and >LIT3) are apparently identical. However, they imply
processors which may differ in the language specific resources
employed.

This example shows that in the same relatively compact
hierarchy, the model can describe multiple alternative workflows,
indicating the number of steps and the tools to be used in which
step.

EN3	

LIT3	

EN2	

LIT1	 EN1	

TXT	

Figure 6: The workflow doing POS tagging for English

PAR
A	

TOK	

POS	

LIT2	

S+POS	

T+POS	

SENT	

5. A Semantic Role Labelling application

The automatic labelling of semantic roles is one of the most
complex examples of linguistic workflows, as the few systems
available include a range of processing steps, from lexical level
analysis (tokenization, POS tagging, etc.) to semantic analysis
(usually word sense disambiguation, alignment with ontologies or
other resources). The following example is inspired by the work
described in (Trandabăţ, 2010; Trandabăț, 2011) to mark semantic
roles on a Romanian corpus. The author has used an aligned
bilingual (English-Romanian) corpus and the semantic roles marked
on the English version, from which the missing SRL markups have
been imported onto the Romanian texts.

Some parts of the flow which were considered not relevant in
the context of this example, as for instance the English semantic
role labelling system, were left hidden in the example shown in
Figure 7.

The nodes in Figure 7 have the following significance:

 2TXTS: contains two versions of the same text, therefore
the two parts should be parallel translations, i.e. represent the same
content (noted here with S). Markings that make explicit the two
languages are supposed to surround the respective parts.

ALIGNEN,RO,S	

Figure 7: Importing semantic role labels

2TXTS	

SRL	 WA	 S	

WASRL	 S	

IMPORTEN,RO,S	

SEM-‐LABEN	

SIMPLRO	

 SRL: the text that include semantic role markups. Suppose
these are SR elements surrounding constituents of sentences;

 WAS: schema containing word-aligning markups between
two texts representing the same content S;

 WASRLS: schema containing word-alignment and semantic
role markups. It is not compulsory that all sentences contain SR
markups.

We will explain now the edges:

• SEM-LABEN signifies an unrevealed (perhaps long)
processing chain which accomplishes semantic roles labelling on
English texts. The language EN is an instantiation condition,
therefore only sentences marked with the attribute-value pair
language=”EN” will be processed.

• ALIGNEN,RO,S is an edge performing a pipeline operation:
the alignment of the sentences belonging to the two languages at
word level. Again, the indexes, mark instantiation conditions: that
the two languages should be EN and RO and the texts have the
same content, S.

• IMPORTEN,RO,S represents the module importing the
semantic roles from one part (EN) onto the parallel part (RO),
provided the two parts represent the same content (S). The module
presupposes to find SR markups on all language=”EN” sentences.

• SIMPLRO is a simplifying operation that prunes off all
markings except the SR elements of the sentences marked with
language=”RO”.

As can be seen in Figure 7, there are three flows in the FMH of
Figure 7 that link the mentioned pair of nodes:

1. 2TXTS >SEM-LAB_EN SRL

2. ((2TXTS >SEM-LAB_EN SRL), (2TXTS >ALIGN_EN,RO,S WA)) >
WASRL <SIMPL_RO SRL

 3. ((2TXTS >SEM-LAB_EN SRL), (TXTS >ALING_EN,RO,S WA)) >
WASRL >IMPORT_EN,RO,S WASRL <SIMPL_RO SRL

Our task of marking semantic roles on RO texts is transposed in
the model as the following requirement: find an instantiation of a

flow linking the start node 2TXTS to the destination node SRL,
such that given a parallel EN-RO document in the input to obtain
the RO sentences annotated with SR elements. As seen, the
instantiation should announce conditions on both the input and
output files, as well as conditions to be verified by all processing
steps. Suppose the input condition is satisfied for all three flows
because a document containing a parallel EN-RO translation of a
content S is presented to the start node 2TXTS.

Edge instantiation conditions for the first flow verifies the
restrictions of the pipeline edge >SEM-LAB_EN, namely that sentences
are marked with the attribute-value pair language=”EN”, which is
true. Finally, the destination conditions are verified, namely that
sentences marked with language = “RO” include also SR markings
on them, which is false. This makes the first flow to be filtered out.
The second flow evaluates to true the condition of ALIGNEN,RO,S,
that the two languages are EN and RO and the texts have the same
content. However, after the merge, the special simplification edge
<SIMPL_RO will prune out all markings, resulting the null file, because
no language=”RO” exists which include also SR markups. As such,
the output condition is not fulfilled and the second flow fails too.
Finally, the third flow includes one more condition induced by
IMPORTEN,RO,S, namely that all sentences marked language=”EN”
include also SR markups, and this is verified. The IMPORTEN,RO,S
pipeline produces sentences marked language=”RO” which include
also SR markups. The <SIMPL_RO will leave only them, and the
destination condition is fulfilled.

This example shows one way in which the model can face an
important feature of processing multilingual documents, the ability
to deal with parallel corpora.

6. Conclusions

Many efforts in the current NLP research are concentrated to
develop and adapt linguistic tools and resources that have an
increased visibility and usability, and to help humanities and social
sciences researchers to deal with the NLP technology. Both areas

require multilingual considerations, and this aspect is the main topic
of this paper.

We have shown a model that needs two steps from the definition
of a NLP problem until the preparation of the actual run: flow
computation and instantiation. At times, the computed flows can be
virtually the same irrespective of the language requirements and
only the instantiation differentiate the specific behaviours. This is in
line with the trend in modern NLP to separate algorithms from
linguistic details. A module designed to perform a specific task can
be put to work on any language if fuelled with appropriate language
resources. This is the case, for instance, with POS-taggers, which
are powered by specific language models (frequency of n-grams). A
syntactic parser can be powered by the grammar of a language to be
effective in parsing sentences of that language. A shallow parser,
which usually implements an abstract automata machinery, could
recognize noun phases of one language if powered by a resource
consisting of a set of regular expressions specific to that language.

The Formats and Modules Hierarchy model supports a number
of important features that characterise NLP processing. We list
below some of the most significant properties of it:

 It allows a unified representation of both annotation
formats and processing tools. An FMH hyper-graph functions as a
framework for recording processing tools, based on which
workflows can be designed and visualised.

 Linguistic resources can be clearly positioned within the
hierarchy of formats, as the annotation schemas they observe.

 A hyper-graph can be shared by a community of
researchers and is enriched any time a user “uploads” an annotated
document/resource or a processing tool.

 Given a pair of input-output formats (called start-
destination nodes in the hierarchy), the model proposes a set of
processing workflows, by computing paths linking them, as
combinations of linguistic processors, simplifications, conversions
and merges.

 By instantiation, a set of flows can be reduced, possible
down to one solution, while also fixing parameters of the
processing components.

Moreover, when a multilingual behaviour is at value, the model
can be characterised by the following set of features:

• Identical processing for different languages: in the model,
two or more languages can share the same processing chain.
However, the component modules may be instantiated differently
by the language specific resources they require.

• Identical input-output schemas to accomplish the same task
for different languages: in the model, two or more linguistic
workflows can share the start-destination nodes pair, but include
different paths, therefore offering distinct solutions. It is possible
that during the instantiation of these flows, for instance induced by
the specification of languages, to be revealed that the ambiguity in
solution disappears for each of the involved languages, because the
language constrains prune off specific parts of the flows.

 Processing of multi-language documents: as revealed by the
last example in section 5, documents that include passages in
different languages can be object to distinct processing.

 Snapshots of available processing power for particular
languages: on a FMH hyper-graph which include tools for many
languages, language filters can be applied to sieve only tools
compatible with the selected languages. At times, this can produce
disconnected hyper-graphs (nodes which cannot be reached),
meaning that no solution exists.

We believe that the main benefit that our model brings to the
multilingual NLP is an abstract and consistent way of looking at
language dependency issues, that allows both generalisations and
particularisations of approaches. However, a lot of research is still
to be done. A revised deployment of the model is our next
objective, as well as the implementation in the model of a large
collection of NLP tools. The most important critics that someone, in
our opinion, can raise with respect to the model is related to the
intrinsic presupposed compatibility of processing tools, that the
model considers given. Indeed, its success relies heavily on a
concerted agreement with respect to the annotation conventions of
linguistic phenomena. Otherwise the critical mass of tools
necessary to build a sufficiently large hierarchy will not be reached.
But, as it is known, although there is a huge need of standardisation
of annotation schemas, standards still lack and there is sufficient

evidence to believe that they will not appear too soon. Moreover,
because the domain is so active, which makes it advance in such a
great speed, the research will always go ahead of any attempt of
standardisation, and therefore, there will always exist tools
employing new formats, which have not been standardised.

This is why, it is foreseeable that a line of research aiming to
infer the semantic content of linguistic annotations should soon be
opened. Copying human skills to recognise the significance of
markings in a file from the first glance, such software will make
possible not only the automatic classification of linguistic resources
conforming to a general hierarchy, but also the automatic
generation of convertors, in order to accomplish interoperability
there where necessary.

Acknowledgments

This research has been partly supported by the ICT PSP projects
METANET4U (under the grant no. 270893) and ATLAS (under the
grant no. 250467).

References

1. Branco A., Trancoso I., Ananiadou S., Thompson P.,
McNaught J., Cristea D., Tufis D., Rosner M., Moreno A., Bel
N. (2011): Specification of pilot services and applications,
Document METANET4U-2011-D2.2, EC CIP project #270893,
to appear on http://metanet4u.eu/

2. Cristea, D., Butnariu, C. (2004): Hierarchical XML
representation for heavily annotated corpora. In Proceedings of
the LREC 2004 Workshop on XML-Based Richly Annotated
Corpora, Lisbon.

3. Cristea D., Forăscu C., Pistol I.C. (2006): Requirements-Driven
Automatic Configuration of Natural Language Applications. In
Bernadette Sharp (Ed.): Proceedings of the 3rd International
Workshop on Natural Language Understanding and Cognitive
Science - NLUCS 2006, in conjunction with ICEIS 2006,

Cyprus, Paphos, May 2006. INSTICC Press, Lisbon, ISBN:
972-8865-50-3.

4. Cristea, D., Pistol, I. (2008): Managing Language Resources
and Tools Using a Hierarchy of Annotation Schemas.
Proceedings of the Workshop on Sustainability of Language
Resources, LREC-2008, Marakesh.

5. Cunningham H., Maynard D., Bontcheva K., Tablan V. (2002):
GATE: A framework and graphical development environment
for robust NLP tools and applications. In Proceedings of the
40th Anniversary Meeting of the ACL (ACL’02). Philadelphia.

6. Ferrucci D. and Lally A. (2004): UIMA: an architectural
approach to unstructured information processing in the
corporate research environment, Natural Language
Engineering 10, No. 3-4, 327-348.

7. Gazdar, G, Mellish, C. (1989): Natural Language Processing in
Lisp, Addison-Wesley.

8. Pistol I.C, Cristea D. (2009): Managing Metadata Variability
within a Hierarchy of Annotation Schemas, in Proceedings of
the 6th International Workshop on Natural Language
Processing and Cognitive Science - NLPCS 2009, Milan - May
2009, pp. 111-116, ISBN: 978-989-8111-92-0.

9. Pistol I.C. (2011): The Automated Processing of Natural
Language, PhD thesis, “Alexandru Ioan Cuza” University of
Iaşi.

10. Trandabăţ D. (2010): Natural Language Processing Using
Semantic Frames, PhD Thesis, University Al. I. Cuza Iasi,
available at: http://students.info.uaic.ro/~dtrandabat/thesis.pdf.

11. Trandabăţ D. (2011) Mining Romanian texts for semantic
knowledge, in Proceedings of Intelligent Systems and Design
Application Conference, ISDA2011, Cordoba, Spain.

