
Deep, Consistent and also Useful:
Extracting Vistas from Deep Corpora for Shallower Tasks

João Silva, António Branco, Sérgio Castro, Francisco Costa

University of Lisbon
Edifı́cio C6, Departamento de Informática,

Faculdade de Ciências, Universidade de Lisboa,
Campo Grande, 1749-016 Lisboa, Portugal

{jsilva, antonio.branco, sergio.castro, fcosta}@di.fc.ul.pt

Abstract
Annotated corpora are fundamental for NLP, and the trend in their development is to move towards datasets with increasingly detailed
linguistic annotation. To cope with the complexity of producing such resources, some approaches rely on a supporting deep processing
grammar that provides annotation that is rich and consistent over its morphological, syntactic and semantic layers. However, for some
purposes, the deep linguistic corpora thus produced are “too deep” and unwieldy. For instance, if one wishes to obtain a probabilistic
constituency parser by learning a model over a treebank, the full extent of the annotation created by a deep grammar is not needed and can
even be detrimental to training. In this paper, we report on procedures that, starting from a deep dataset produced by a deep processing
grammar, extract a variety of vistas—that is, subsets of the information contained in the full dataset. This allows taking a single base
dataset as a starting point and, from it, deliver a variety of corpora that are more streamlined and focused on particular tasks.

1. Introduction
Annotated corpora are key resources for NLP. Not only are
they important materials for researchers investigating lin-
guistic phenomena, they also allow one to automatically ob-
tain data-driven models of language and evaluate the tools
thus produced.
Annotating corpora with human-verified linguistic infor-
mation is a time-consuming and often error-prone task.
Early treebanks for NLP, like the well-known Penn Tree-
bank corpus, were built with the help of automatic anno-
tation tools that were used to provide a preliminary anno-
tation which was then manually corrected (Marcus et al.,
1993).
Performing such corrections by hand can introduce format-
ting errors since manual changes may easily be malformed
(e.g. misspelled categories, forgetting to close a bracket,
etc). As such, the manual correction step is often aided by
a tool that ensures that at least the linguistic information is
well formed
However, as the linguistic information one wishes to in-
clude in the corpus grows in complexity, this approach be-
comes increasingly hard to adopt since the human annota-
tor, even with the help of supporting software, has to keep
track of too much interconnected information.
To address this issue, approaches to corpus annotation have
come to rely on an auxiliary deep processing grammar as a
way of producing rich annotation that is consistent over its
morphological, syntactic and semantic layers. Two exam-
ples of such an approach are (Dipper, 2000), using an LFG
framework, and (Oepen et al., 2002), under HPSG.
Despite these advantages in terms of consistency and depth
of the information encoded, the annotation produced by
such grammars is often too theory-specific or too unwieldy
for certain purposes. For instance, if one wishes to train a
probabilistic constituency parser, the linguistic information
on grammatical functions and semantic roles present in the

output of a deep grammar is not needed and, if integrated
into the model, might actually be detrimental to the perfor-
mance of the parser due to data-sparseness issues.
The image in Figure 1 helps to illustrate the problem. It
shows the fully-fledged grammatical representation, under
the HPSG framework, for the rather simple sentence Todos
os computadores têm um disco (Eng.: All computers have a
disk).1

Thus, it is desirable to have a process that allows extract-
ing vistas—that is, subsets of the information contained in
the full dataset—such as text annotated with part-of-speech
tags, a plain constituency tree or a grammatical dependency
graph.
In this paper we present a set of procedures that allow ex-
tracting several such vistas from a deep linguistic dataset.
In particular, we will use a dataset that has been pro-
duced by a computational grammar based on the HPSG
framework (Pollard and Sag, 1994; Sag and Wasow, 1999;
Copestake, 2002).
Section 2 provides an overview of the grammar-supported
annotation procedure used to produce the full deep dataset,
while Section 3 describes the deep dataset itself. This is fol-
lowed by Section 4, where the vista extraction procedures
are presented. Section 5 provides an extrinsic evaluation of
the extracted vistas by inducing probabilistic parsers over
them. Finally, Section 6 concludes with final remarks.

2. Grammar-Supported Treebanking
A grammar-supported approach to corpus annotation con-
sists in using a computational grammar to produce all pos-
sible analyses for a given sentence. What is then asked of
the human annotator is to select the correct parse among all
those that were returned. In such a setup, the task of the

1The printout is in a 6pt font. The arm and hand holding a
pen are there just to give a sense of the size of the grammatical
representation.

45

Figure 1: Full HPSG representation of the sentence

human annotator can be envisaged as being one of disam-
biguation.
Due to the inherent ambiguity of natural language, the parse
forest that results from the grammar producing all possible
analyses for a sentence may very well include hundreds of
trees. Manually examining each individual tree in search
for the correct one would prove unfeasible. Instead, the hu-
man disambiguator goes through a list of discriminants to
reduce the number of parses. Discriminants are binary dis-
ambiguation decisions, many of which cut the parse forest
in half.
For instance, PP-attachment is a common source of struc-
tural ambiguity, where a PP constituent may validly attach
to more than one constituent in the parse tree. A discrim-
inant would state whether the PP attaches to a given con-
stituent. Choosing that discriminant as valid automatically
prunes from the parse forest all parses where the attach-
ment of that PP is different, while marking the discriminant
as invalid discards all trees where the PP is attached to that
same constituent.
For such an approach to work, it must be supported by a
tool that provides the discriminants and handles the prun-
ing of the parse forest in a manner that is unobtrusive for
the human annotator. For datasets in the HPSG family,
like the one used in this work, this can be done using the
[incr tsdb()] tool (Oepen and Flickinger, 1998). Be-
sides providing an interface for the disambiguation pro-
cess described above, this tool integrates functionality for
benchmarking, profiling and testing the grammar over test
suites.

3. The Core Dataset
To create the core deep linguistic dataset from which the
vistas will be extracted, we started with a corpus of Por-
tuguese newspaper excerpts which had been previously an-
notated with manually verified shallow morpho-syntactic
data, namely part-of-speech tags, lemmas, inflection fea-
tures and information on named-entities.
This corpus was then treebanked according to the process
outlined in Section 2. The supporting grammar that was
used is LXGram, a deep computational grammar for Por-
tuguese (Branco and Costa, 2008; Branco and Costa, 2010).
It is worth of note that, for this dataset, annotation was done
through a method of double-blind annotation followed by
adjudication. In this setup, two human annotators work in-
dependently while pruning the parse forest returned by the
grammar. If both annotators agree on the choice of an anal-
ysis, that analysis is added to the dataset. When the an-
notators disagree on what is the preferred analysis, a third
human annotator, the adjudicator, is brought in to decide
which analysis will be added to the dataset, if any (the adju-
dicator is free to choose a third analysis, rejecting the ones
chosen by either annotator). This method of corpus annota-
tion is resource-consuming, both in terms of human effort
(three people are needed) and in terms of time (an adju-
dication round is required), but it allows a stricter quality
control of the dataset being produced.
Due to the way it was built, the core dataset only con-
tains those sentences that the supporting grammar was able
to parse. It is formed by 5,422 sentences, most of which
(4,644, or 86%) from newspaper text. The remaining sen-
tences (778, or 14%) were part of the LXGram distribution
and consist of sentences used for regression testing of the
grammar.

4. Extracting Vistas
In this work we cover three vistas: the TreeBank, the De-
pendencyBank and the PropBank, A TreeBank vista is a
constituency tree, the familiar structure that represents the
various constituents of the sentence and their level of aggre-
gation. A DependencyBank vista, instead of giving a tree
structure describing syntactic constituency, is a graph that
relates pairs of words by a syntactic function (i.e. subject,
direct object, modifier, etc). The PropBank is a dataset sim-
ilar to the one described in (Kingsbury and Palmer, 2003) in
that it consists of a layer of semantic role annotation that is
added to phrases in the syntactic structure of the sentence.
The format of these extended nodes in the PropBank tree is
C-GF-SR, where C is the constituency tag, GF corresponds
to the grammatical function and SR to the semantic role.
What is important to note regarding these three vistas is
that the information contained in a PropBank is a super-set
of the information present in the other two vistas. Our ap-
proach is then to take the PropBank as the main vista since
the other two vistas, viz. the TreeBank and the Dependen-
cyBank, can in turn be obtained directly from it instead of
having to extract each of them independently from the deep
dataset.
For this we began by creating a PropBank extraction tool
that runs over the deep representations resulting from the
grammar-supported treebanking process. This tool makes

46

use of the Tregex library created by the Stanford NLP
Group (Levy and Andrew, 2006),2 which provides a lan-
guage for pattern matching over tree structures and regular
expression matches over tree nodes.

4.1. PropBank Vista
The procedure that creates the PropBank consists of several
steps, each having to deal with non-trivial issues. These
steps are described in this Section.

4.1.1. Retrieving the Exported Tree
The deep representation of a sentence that is exported by
[incr tsdb()] at the end of the manual disambigua-
tion process includes the derivation tree, which encodes the
rules that were used by the grammar during analysis of that
sentence and the order in which they were applied. The
exported deep representation also includes a second tree
which has the same structure as the derivation tree, but
where the rule names have been mapped into syntactic cat-
egories. This second tree, which we will call the exported
tree, is taken by the tool as the starting point of the vista
extraction procedure.

4.1.2. Tokenization
Due to the inner workings of [incr tsdb()], the leafs
in the exported tree are all converted to lowercase and trun-
cated to the first 30 characters. Moreover, given the gram-
mar used, the original newspaper corpus that was tree-
banked contains information not present in the deep dataset
that has been created by the grammar (e.g. information on
named entities). Thus, in order not to lose this data, we
want it to be possible to incorporate it into the vistas. The
most straightforward way of fixing each leaf is to replace it
by the corresponding token from the original sentence.
For either of these procedures to work, leafs and tokens
must be aligned. However, there is not a one-to-one cor-
respondence between the leafs in the exported tree and the
tokens in the sentence due to the original corpus and the
grammar having different criteria for tokenization.
This is readily apparent in punctuation symbols, which are
still attached to words in the exported tree, while they are
found tokenized (i.e. detached from words) in the sentence.
Given that the purpose of the tokenization stage is only to
obtain a one-to-one correspondence between the leafs in the
exported tree and the tokens in the sentence, punctuation
symbols are simply detached from words and temporarily
placed in a newly created sister node. The process of mov-
ing the punctuation symbols to their correct position in the
final tree merits a slightly more detailed explanation and is
addressed further ahead

4.1.3. Feature Bundles
Following the tokenization step, the leafs in the exported
tree will be aligned one-to-one with the tokens from the
original corpus, which allows the tool to easily copy the
morpho-syntactic information from the corpus over to the
tree as feature bundles that are appended to the leafs.
Figure 2 shows the breakdown of a feature bundle into its
parts. Having the POS tag as a feature might at first seem

2Tregex website at http://nlp.stanford.edu/
software/tregex.shtml.

comprei︸ ︷︷ ︸
word

/ V︸︷︷︸
POS

: COMPRAR︸ ︷︷ ︸
lemma

: ppi-1s︸ ︷︷ ︸
inflection

: O︸︷︷︸
n.e.︸ ︷︷ ︸

feature bundle

Figure 2: Leaf with added feature bundle

unnecessary, since that information is given by the pre-
terminal node of the tree, but the POS tagset of the orig-
inal corpus is different from the one used by the grammar
and, in this way, no information is lost. Named-entity in-
formation is encoded using a tagset like the one from the
CoNLL shared task (Tjong Kim Sang, 2002): B is used for
the first word in an entity, and I for any subsequent words
in the same entity. A string representing the semantic type
of the entity (e.g. PER for person, LOC for location, etc.) is
appended. The letter O marks a word not belonging to any
named entities.
Note that, in the following examples, the feature bundles
appended to the leafs are not shown for the sake of read-
ability.

4.1.4. Moving Punctuation
Punctuation symbols were detached from words during to-
kenization and placed in a temporary position. The current
step is concerned with deciding where in the final tree to
place the node with the detached punctuation symbol since
its final position will depend on the syntactic construction
the symbol is a part of.
Coordination is represented as a recursive tree structure
where several constituents of the same type are combined
together. Usually, a comma is used to separate each con-
stituent, except for the last one which is delimited by an
explicit conjunction, such as e (Eng.: and), ou (Eng.: or),
etc.
As the example in Figure 3 shows, the comma is initially
attached to the final word in a constituent of the enumera-
tion. After being detached from the word, it is placed under
a new node (PNT) which is in an adjunction position to the
node to the right.
Appositions inside NPs are delimited by commas. This is
made explicit in the tree representation by placing the appo-
sition in a sub-tree that itself is delimited on either side by a
pair of matching punctuation nodes, as shown in Figure 4.
Parenthetical structures and quoted expressions are repre-
sented in a similar way. These are also the only situations
where ternary nodes are used.
In all other cases, such as sentence-ending punctuation and
topicalization, punctuation is adjoined far up as possible
without crossing constituent boundaries. Figure 6 shows an
example.

4.1.5. Collapsing Unary Chains
The syntactic representation of the exported tree contains
unary chains of nodes with the same label. As mentioned
above, this happens because the structure of the exported
syntactic tree mirrors that of the derivation tree, which rep-
resents the rules applied by the grammar. Each node in
these chains corresponds to the application of a unary mor-
phological rule by the grammar (cf. (Copestake, 2002, Sec-
tion 5.2) for more on such rules).

47

XP

XP

XP

XP

.

CONJ

e

XP

.

XP

. ,

(a) exported tree

XP

XP

XP

XP

XP

.

CONJ

e

XP

.

PNT

,

XP

.

(b) final tree

Figure 3: Coordination

NP

NP

. ,

NP

. ,

(a) exported tree

NP

NP

PNT

,

NP

.

PNT

,

NP

.

(b) final tree

Figure 4: Apposition

For instance, the unary chain of three N nodes that domi-
nates the word computadores (Eng.: computers) in Figure 5
corresponds, from the bottom up, to the application of the
following morphological rules: COMPUTADOR (the rule for
the lexical entry of the word), MASC-NOMINAL (flags a fea-
ture that marks the word as having gender inflection) and
PL-NOMINAL (flags a feature that marks the word as hav-
ing number inflection).
These various nodes in these unary chains are collapsed into
a single node in the final tree.

4.1.6. Adding Phonetically Null Items
Nodes marking null subjects (*NULL*), null heads (*EL-
LIPSIS*), traces of constituents (*GAP*) and tough objects
(*TOUGH*) are explicitly added to the final tree. There are
several details concerning this step that are worth pointing
out.
Pattern matching over the exported syntactic tree is not
enough to always detect where one should add the nodes
for phonetically null items. Instead, to do that, one must
look at the derivation tree, since the relevant information
can be found in the name of the derivation rule.
However, at this stage of processing, the syntactic tree and
the derivation tree, which began by being isomorphic, do
not have matching structures anymore, since the syntactic
tree has been altered (viz. when moving punctuation and
when collapsing unary chains). This issue was overcome by
decorating the nodes in the syntactic tree with information
taken from the derivation tree while both structures are still
isomorphic.

Having decorated the syntactic tree, adding tree branches
representing null subjects and null heads is quite straight-
forward.
Null subjects are found by looking for SNS nodes in the ex-
ported syntactic tree, which are the way the grammar cate-
gorizes a sentence with a null subject. However, to properly
assign a semantic role, the tool needs to look at the rule
name from the corresponding node in the derivation tree,
since the rule name indicates whether the missing NP-SJ
node is an expletive (no semantic role), a passive construc-
tion (ARG2), a causative alternation (ARGA) or falls under
the default case (ARG1).
Null heads are found by searching the derivation tree for
certain rule names. The rule name not only indicates the
category of the missing head (nominal or verbal) but also
whether the head is the left or right child of the node.
Figure 6 shows an example of a parse tree with a null sub-
ject and a null nominal head.
Nodes with a trace constituent are decorated by searching
the derivation tree for a rule that indicates the extraction
of a constituent and marking the corresponding node in the
syntactic tree. The rule name also indicates whether the
extracted constituent is on the left or on the right side of
the node. The category of the extracted constituent is given
by the usual HPSG slash notation, where a node labeled
with X/Y indicates a constituent of type X that is missing a
constituent of type Y.
When adding the trace, it suffices searching for the dec-
orated node and add the *GAP* node as its left of right
child, depending on the marking. In addition, the trace is

48

VP

NP-DO-ARG2

N

N

N

computadores

D-SP

CARD

CARD

CARD

mil

V

V

V

comprei

(a) exported tree

VP

NP-DO-ARG2

N

computadores

D-SP

CARD

mil

V

comprei

(b) final tree

Figure 5: Unary chains
(Eng.: I bought a thousand computers)

SNS

VP

PP-M-ADV

NP-C

QNT-SP

todos.

P

a

V

Acontece

(a) exported tree

S

PNT

.

S

VP

PP-M-ADV

NP-C

N

ELLIPSIS

QNT-SP

todos

P

a

V

Acontece

NP-SJ-ARG1

NULL

(b) final tree

Figure 6: Null subjects and null heads
(Eng.: Happens to everyone)

co-indexed with the displaced node by affixing the same in-
dex number to the trace and to the corresponding displaced
constituent, as shown in Figure 7.
The displaced node is found by following the path of
slashed constituents from the trace up to the topmost slash,
which is the sister node of the displaced node.
When the sister of the topmost slash is not of the expected
category it indicates a “tough” construction, and the trace
node is marked with *TOUGH*, as shown in Figure 8.

4.1.7. Extending Semantic Role Annotation
The semantic role tags present in some of the nodes are at a
different abstraction level than the constituency information
conveyed by the phrase labels and tree structure. In par-
ticular, some role annotations show cross-tree dependency,
where they need to refer to more than one constituent al-
though the exported trees do not make this explicit.
This is the case with complex predicates, such as modals,

auxiliaries and raising verbs. In such cases, the semantic
role tag is suffixed with “cp” (for complex predicate). An-
ticausative constructions are handled in a similar way, but
using “ac” as a suffix to the role tag.
For instance, the tree snippet shown in Figure 9 indicates
that, though the NP is the subject of the VP, it is not the
ARG1 of the head verb of the VP, but instead it is the ARG1
of some verb that is located down in the complex predicate
topped by the VP.
Arguments of control verbs are handled in a similar man-
ner, but one needs to look at the lexical type of the verb to
determine whether it is a subject, direct object or indirect
object control verb. To achieve this, the grammar lexicon
is used to map the derivation rule for the lexical entry of a
word (i.e. the pre-terminal node in the derivation tree) into
the corresponding lexical type.
For instance, the ARG11 tag in Figure 10 indicates that the
NP is both the subject of the control verb, querem (Eng.:

49

S

S/AP-PRD

NP-SJ-ARG1

N

Mário Reis

VP/AP-PRD

AP-PRD 1

GAP

V

estava

AP-PRD 1

Mais satisfeito

Figure 7: Traces and co-indexation
(Eng.: More pleased was Mário Reis)

S

VP

AP-PRD

PP-C-ARG1/NP-DO-ARG2

S-C/NP-DO-ARG2

VP/NP-DO-ARG2

NP-DO-ARG2

TOUGH

V

reparar

NP-SJ-ARG1

NULL

P

de

A

difı́cil

V

é

NJ-SJ-ARG1

Esse problema

Figure 8: “Tough” constructions
(Eng.: That problem is tough to repair)

S

VP

.

NP-SJ-ARG1cp

.

Figure 9: Complex predicate

S

VP

V-C-ARG2

dormir

V’

V

querem

ADV-M-ADV

não

NP-SJ-ARG11

As crianças

Figure 10: Control verbs
(Eng.: The children don’t want to sleep)

50

want), and subject in the clause occurring as direct object
of that verb.

4.2. TreeBank Vista
Having extracted the PropBank vista, the TreeBank vista is
straightforward to obtain by simply discarding all informa-
tion on grammatical function and semantic roles, leaving
only the lexical and phrasal constituency information in the
nodes of the tree.

4.3. DependencyBank Vista
To obtain the DependencyBank vista, one would like to
make use of the extracted PropBank vista as an intermedi-
ate representation since it has already gone through an ex-
tensive normalization process. Fortunately, this is possible
given that the trees that form the PropBank also include in-
formation on grammatical function in tags that are attached
to the labels of some constituency nodes (e.g. SJ for subject,
DO for direct object, M for modifier, etc). This gives us a
straightforward way to automatically extract a dependency
dataset from the PropBank.
Given that the PropBank adheres to an X-bar representa-
tion, phrasal nodes will have two children, one of which
will be marked with a grammatical function. The (head of
the) child that is marked is dependent on the (head of the)
other child under the given grammatical function. The head
of the phrasal node is the head of the unmarked child.
For instance, the tree fragment shown in Figure 11 yields a
dependency where the head of ZP depends on the head of
YP under relation F. The head of XP is the head of YP.
In the DependencyBank, displaced constituents are not rep-
resented by a *GAP* node. Instead, the head of the dis-
placed node is dominated by the governor of its co-indexed
node. For instance, in Figure 7 the head of the AP-PRD
constituent is dependent on the verb estava (Eng.: was).
For complex predicates and anticausative constructions, the
grammatical function tag is suffixed with the corresponding
tag (i.e. either “cp” or “ac”). For instance, in Figure 9, the
head of the NP is dependent on the head of the VP under
the SJcp relation.
This procedure is carried out by a second tool that takes the
PropBank as input and outputs the DependencyBank in the
format of dependency triples and also in the widely-used
CoNLL format (Nivre et al., 2007).

5. Evaluation
The extraction tool and the resulting vistas were evaluated
extrinsically by measuring the performance of constituency
and dependency probabilistic parsers trained over the cor-
responding vistas. The rationale for this approach being
that a high quality dataset, with a consistent representa-
tion, should allow training probabilistic parsers that per-
form with high accuracy.
Note that, for the purpose of linguistic studies, both the
TreeBank and the DependencyBank contain nodes that cor-
respond to phonetically null items. These items, however,
do not correspond to actual tokens that will appear in the
input to the parser. Accordingly, they are removed from the
TreeBank and DependencyBank vistas when training the

parsers. In the TreeBank, the branches formed by a pho-
netically null item and the pre-terminal node immediately
above it are pruned from the tree. Other information asso-
ciated with these items, such as co-indexes and the slash
notation used for traces, is also removed from the tree. In
the PropBank, any dependencies involving the null items
are discarded.
Since the focus is not on the development and tuning of the
parsers, we opted for simply taking freely available third-
party tools and running them out-of-the-box.
For constituency, we ran the Stanford parser (Klein and
Manning, 2003), using the default parameters, over the
5,422 sentences in the TreeBank. This parser induces sep-
arate models, one for phrase-structure and one for lexical
dependencies, which are then factored together during an-
notation. Following a standard 10-fold cross-validation ap-
proach, we obtained an 88% score under the Parseval met-
ric. This is on par with the performance scores obtained by
the same parser for English when training over the much
larger Wall Street Journal dataset.
For evaluating the DependencyBank, we used MSTParser
(McDonald et al., 2006), again using the default param-
eters. This parser works in two stages, the first assign-
ing unlabeled dependency edges which are then labeled in
the second stage using a sequence classifier. Under a 10-
fold cross-validation evaluation methodology, we obtained
a 87% labeled accuracy score, which is also a state-of-the-
art score for this task.

6. Conclusion and Final Remarks
In this paper we presented and assessed a procedure for ex-
tracting vistas from a core deep dataset.
Deep processing grammars provide rich, accurate and con-
sistent grammatical analyses for sentences, as well as
much-needed support for the effective treebanking of cor-
pora being annotated with rich linguistic information.
However, the output of such grammars may be too complex
and unwieldy for what is required by certain tasks, motivat-
ing the need for creating procedures that extract streamlined
and focused vistas. Such procedures allow taking a single,
deep dataset as a starting point, with all the linguistic rich-
ness and annotation consistency that it offers, and extract
subsets of the information contained in it.
For the work described in this paper, this core dataset is
composed of 5,422 sentences of mostly newspaper text.
It was created with the help of an HPSG deep process-
ing grammar by manual double-blind disambiguation of the
analyses produced by the grammar.
A tool was described that extracts a PropBank vista, a syn-
tactic structure where phrases are enriched with a layer of
semantic role annotation. The extracted PropBank was then
used as a super-vista from which TreeBank and Dependen-
cyBank vistas were in turn also extracted.
These latter two vistas were evaluated by training proba-
bilistic parsers over them, namely a constituency parser for
the TreeBank and a dependency parser for the Dependen-
cyBank. In both cases, under 10-fold cross-validation, the
parsers achieved state-of-the-art scores.

51

XP

ZP-F

. Hz.

YP

. Hy.

(a) PropBank snippet

Hy Hz
F

Hz depends on Hy under relation F
Hy becomes the head of XP

(b) dependency relation

Figure 11: Extracting dependencies

7. References
António Branco and Francisco Costa. 2008. A compu-

tational grammar for deep linguistic processing of Por-
tuguese: LX-Gram, version A.4.1. Technical Report DI-
FCUL-TR-08-17, University of Lisbon.

António Branco and Francisco Costa. 2010. A deep lin-
guistic processing grammar for Portuguese. In Pro-
ceedings of the 9th Encontro para o Processamento
Computacional da Lı́ngua Portuguesa Escrita e Falada
(PROPOR), LNAI, pages 86–89. Springer.

Ann Copestake. 2002. Implementing Typed Feature Struc-
ture Grammars. CSLI Publications.

Stefanie Dipper. 2000. Grammar-based corpus annotation.
In Proceedings of the Workshop on Linguistically Inter-
preted Corpora, pages 56–64.

Paul Kingsbury and Martha Palmer. 2003. Propbank: The
next level of treebank. In Proceedings of the 2nd Work-
shop on Treebanks and Linguistic Theories (TLT), pages
105–116.

Dan Klein and Christopher Manning. 2003. Fast exact in-
ference with a factored model for NLP. Advances in
Neural Language Processing Systems, 15:3–10.

Roger Levy and Galen Andrew. 2006. Tregex and Tsur-
geon: Tools for querying and manipulating tree data
structures. In Proceedings of the 5th Language Re-
sources and Evaluation Conference (LREC).

Mitchell Marcus, Mary Marcinkiewicz, and Beatrice San-
torini. 1993. Building a large annotated corpus of En-
glish: The Penn treebank. Computational Linguistics,
19(2):313–330.

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the 10th
Conference on Natural Language Learning (CoNLL),
pages 216–220.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDonald,
Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007.
The CoNLL 2007 shared task on dependency parsing.
In Proceedings of the 11th Conference on Natural Lan-
guage Learning (CoNLL), pages 915–932.

Stephan Oepen and Daniel Flickinger. 1998. Towards sys-
tematic grammar profiling. Test suite technology ten
years after. Journal of Computer Speech and Language,
12(4):411–436.

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning, Dan Flickinger, and Thorsten
Brants. 2002. The LinGO Redwoods treebank: Motiva-
tion and preliminary applications. In Proceedings of the

19th Conference on Computational Linguistics (COL-
ING).

Carl Pollard and Ivan Sag. 1994. Head-Driven Phrase-
Structure Grammar. The University of Chicago Press.

Ivan Sag and Thomas Wasow. 1999. Syntactic Theory: A
Formal Introduction. CSLI Publications.

Erik Tjong Kim Sang. 2002. Introduction to the CoNLL
2002 shared task: Language-independent named entity
recognition. In Proceedings of the 6th Conference on
Natural Language Learning (CoNLL), pages 155–158.

52

	12.LREC 2012 Advanced Treebanking Proceedings 53.pdf
	12.LREC 2012 Advanced Treebanking Proceedings 54.pdf
	12.LREC 2012 Advanced Treebanking Proceedings 55.pdf
	12.LREC 2012 Advanced Treebanking Proceedings 56.pdf
	12.LREC 2012 Advanced Treebanking Proceedings 57.pdf
	12.LREC 2012 Advanced Treebanking Proceedings 58.pdf
	12.LREC 2012 Advanced Treebanking Proceedings 59.pdf
	12.LREC 2012 Advanced Treebanking Proceedings 60.pdf

