
	

	

	

	

	

	

Second Version of Pilot
Applications
	 Deliverable D4.6

Version 1.0

2012-07-31

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

2	

METANET4U,	 Project	 CIP	 #270893	 	 	

METANET4U	
www.metanet4u.eu

The central objective of the Metanet4u project is to contribute to the establishment of a pan-
European digital platform that makes available language resources and services, encompassing
both datasets and software tools, for speech and language processing, and supports a new
generation of exchange facilities for them.
This central objective is articulated in terms of the following main goals:
Assessment: to collect, organize and disseminate information that permits an updated insight into
the current status and the potential of language related activities, for each of the national and/or
language communities represented in the project. This includes organizing and providing a
description of: language usage and its economic dimensions; language technologies and resources,
products and services; main actors in different areas, including research, industry, government and
society in general; public policies and programs; prevailing standards and practices; current level
of development, main drivers and roadblocks; etc.
Collection: to assemble and prepare language resources for distribution. This includes collecting
languages resources; documenting these language resources; upgrading them to agreed standards
and guidelines; linking and cross-lingual aligning them where appropriate.
Distribution: to distribute the assembled language resources through exchange facilities that can
be used by language researchers, developers and professionals. This includes collaboration with
other projects and, where useful, with other relevant multi-national forums or activities. It also
includes helping to build and operate broad inter-connected repositories and exchange facilities.
Dissemination: to mobilize national and regional actors, public bodies and funding agencies by
raising awareness with respect to the activities and results of the project, in particular, and of the
whole area of language resources and technology, in general.

METANET4U is a project in the META-NET Network of Excellence, a cluster of projects aiming at
fostering the mission of META. META is the Multilingual Europe Technology Alliance, dedicated to
building the technological foundations of a multilingual European information society.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

3	

METANET4U,	 Project	 CIP	 #270893	 	 	

METANET4U is co-funded by the participating institutions and the ICT Policy Support Programme of
the European Commission

and by the participating institutions:

Faculty of Sciences, University of Lisbon

Instituto Superior Técnico

University of Manchester

University Alexandru Ioan Cuza

Research Institute for Artificial Intelligence,
Romanian Academy

University of Malta

Technical University of Catalonia

Universitat Pompeu Fabra

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

4	

METANET4U,	 Project	 CIP	 #270893	 	 	

Revision History

Version Date Author Organisation Description

0.7 20th July 2012 Sophia Ananiadou
et al.

UNIMAN First Draft

0.8 25th July 2012 Sophia Ananiadou
et al.

UNIMAN Second Draft
incorporating feedback
from partners

0.9 26th July 2012 Sophia Ananiadou
et al.

UNIMAN Pre-final version
checked by reviewers

1.0 30th July 2012 Sophia Ananiadou
et al.

UNIMAN Final version

	

Statement of originality:

This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of
others has been made through appropriate citation, quotation or both.	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

5	

METANET4U,	 Project	 CIP	 #270893	 	 	

METANET4U	
	

Second version of pilot
applications
Document METANET4U-2012-D4.6

EC CIP project #270893

Deliverable D4.6
Completion: Final
Status: Submitted

Dissemination level: Restricted to other programme participants

Responsible: Sophia Ananiadou (WPS coordinator)

Contributing Partners: UNIMAN, UPF, FCUL, IST, UAIC, RACAI, UOM, UPC

Authors: Sophia Ananiadou, Paul Thompson, John McNaught, Jorge
Vivaldi, Núria Bel, João Balsa, Rita Henriques, João Silva, Thomas

Pellegrini, Isabel Trancoso, Gonçalo Simões, Rui Lageira, Ionut Pistol,
Radu Simionescu, Alex Moruz, Radu Ion, Dan Tufis, Andrew Attard, Jan

Joachimsen, Mike Rosner, Antonio Bonafonte, Asunción Moreno 	

Reviewers: Mike Rosner, Andrew Attard

© all rights reserved by FCUL on behalf of METANTE4U

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

6	

METANET4U,	 Project	 CIP	 #270893	 	 	

Contents

1	 Introduction	 ..	 8	
2	 Interoperability	 work	 schedule	 ..	 9	
3	 Evaluation	 workflows	 in	 U-‐Compare	 ..	 12	
4	 UIMA	 components	 delivered	 ..	 17	
4.1	 University	 of	 Lisbon	 (ULX)	 ..	 19	
4.1.1	 Tools	 ...	 19	
4.1.2	 Corpora	 ..	 21	

4.2	 IST	 –	 Instituto	 Superior	 Técnico	 ..	 22	
4.3	 University	 of	 Manchester	 –	 UNIMAN	 ..	 23	
4.3.1	 Tools	 ...	 23	
4.3.2	 Corpora	 ..	 26	

4.4	 University	 Alexandru	 Ioan	 Cuza	 (UAIC)	 ..	 28	
4.4.1	 Tools	 ...	 28	

4.5	 RACAI	 –	 Romanian	 Academy	 ..	 32	
4.5.1	 Tools	 ...	 32	

4.6	 University	 of	 Malta	 (UOM)	 ...	 33	
4.6.1	 Tools	 ...	 33	

4.7	 UPC	 -‐	 Universitat	 Politècnica	 de	 Catalunya	 ..	 34	
4.8	 UPF-‐	 Universitat	 Pompeu	 Fabra	 ..	 34	

5	 Workflows	 delivered	 or	 updated	 at	 M18	 ..	 35	
5.1	 Augmented	 workflows	 ..	 37	
Paragraph	 breaking	 ..	 39	
Sentence	 splitting	 ...	 40	
Tokenization	 ..	 41	
Part-‐of-‐speech	 tagging	 ...	 42	
Lemmatization	 ..	 43	
Syntactic	 chunking	 ..	 44	
Syntactic	 parsing	 ..	 45	
NP	 chunking	 ...	 46	
Named	 entity	 recognition	 ...	 47	
Text	 translation	 ..	 48	

5.2	 Newly	 implemented	 workflows	 ..	 49	
Sentence	 splitting	 evaluation	 ..	 50	
Tokenization	 evaluation	 ...	 51	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

7	

METANET4U,	 Project	 CIP	 #270893	 	 	

Part-‐of-‐speech	 tagging	 evaluation	 ..	 52	
Discourse	 parsing	 ..	 53	
Segmentation	 ...	 54	
Named	 entity	 recognition	 evaluation	 ..	 55	
Species	 disambiguation	 for	 biological	 named	 entities	 ..	 56	
Summarization	 version	 1	 (with	 possible	 spoken	 output)	 ..	 57	

6	 Upcoming	 work	 ...	 58	
6.1	 Implementation	 of	 remaining	 workflows	 ...	 58	
6.1.1	 UAIC	 ..	 58	
6.1.2	 UOM	 ..	 61	
6.1.3	 UPC	 ..	 61	
6.1.4	 UPF	 ..	 62	

6.2	 Integration	 of	 UIMA	 components	 into	 U-‐Compare	 ...	 63	
7	 References	 ...	 64	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

8	

METANET4U,	 Project	 CIP	 #270893	 	 	

1 Introduction

META-SHARE is the infrastructure that will be used to make available the
language resources (LRs) being released as part of METANET4U (and
related projects). Developers of third-party LRs are also being encouraged
to make their LRs accessible via META-SHARE, thus making it a useful
facility for all types of LR developers and users.

As has already been described in detail in D4.4 First version of pilot
applications, developers of NLP applications often want to combine various
basic language processing tools (e.g. sentence splitters, tokenisers, part-
of-speech taggers, etc.) into pipelines, to carry out more sophisticated
tasks, such as parsing, named entity recognition, etc. A common barrier
to chaining such tools together is that they are not interoperable. For
example, different LRs are implemented in different programming
languages, and they may have different input/output formats, or use
different data types. This means that the developer may have to waste
time writing extra code to ensure that different tools can “talk” to each
other.

In order to address such issues, a major focus of work in the METANET4U
project is to demonstrate explicitly the advantages that can be brought to
NLP application building by making resources interoperable. Through our
“pilot” work on interoperability, our aim is to encourage providers of LRs
in META-SHARE to make their resources interoperable.

Interoperability can be achieved in a number of different ways. For
example, the PANACEA project1, with which one of the METANET4U
project partners (UPF) is involved, ensures interoperability between LRs
by making them available as web services which communicate via a
common interface. PANACEA was described in more detail in Deliverable
D2.2 Specification of pilot services and applications.

In METANET4U, our work on interoperability (Ananiadou et al, 2011;
Thompson et al., 2011) makes use of another framework for
interoperability that has already been adopted by a large number of
language processing groups world-wide for making their LRs
interoperable, i.e., the UIMA (Unstructured Information Management
Architecture) framework (Ferrucci et al., 2006). The advantages of using
UIMA include not only the fact that it is well-known, but also that a
development environment, U-Compare (Kano et al, 2009; Kano et al,
2011) is available, which provides a graphical user interface allowing
interoperable UIMA components to be combined together into workflows
using simple drag-and-drop actions, and evaluated against gold standard
corpora, with no coding effort required. Thus, by making LRs available as

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 http://www.panacea-‐lr.eu/	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

9	

METANET4U,	 Project	 CIP	 #270893	 	 	

UIMA components, and using them within U-Compare, it is possible to
build and experiment with prototype applications, using various
combinations of LRs, in a rapid and straightforward manner. This means
that experiments with different configurations of workflows can be carried
out in a straightforward manner by both experienced developers and less
technical users. U-Compare and UIMA have both been described in detail
in Deliverables 2.2 and 4.4.

The work on interoperability in the METANET4U project consists of the
following:

a) Converting a subset of the LRs that METANET4U is making available
on META-SHARE into interoperable UIMA components. These
components will include both monolingual LRs operating on the
various different languages involved in the project, as well as multi-
lingual and speech-based LRs.

b) Using U-Compare, the newly created UIMA components are being
combined in various ways (sometimes with existing components in
the U-Compare library) to create a set of “pilot” applications or
workflows, which can be used to carry out various different NLP
tasks, often in a number of different languages. The purpose of this
work is to showcase the power of UIMA and U-Compare in allowing
various workflows to be constructed and evaluated easily and
rapidly.

2 Interoperability work schedule
In D4.4 First Version of Pilot Applications, we provided a detailed
description of the steps involved in our work on interoperability. Here, we
provide a brief recap of these steps, together with information about
current progress, and where to find information about the completed
steps of the work.

1) Identifying a set of LRs to make available as UIMA components.
These mainly consist of a subset of the LRs (both tools and corpora)
which each partner agreed to upgrade and make available on META-
SHARE, as specified in D2.1 Report on first selection of resources. The
selection was determined according to the perceived potential to be
incorporated within NLP and text mining workflows. To these were
added some additional resources, in order to better demonstrate the
potential for multi-lingual and speech-based applications within U-
Compare. A total of 67 potentially suitable resources for use within
UIMA workflows were identified, operating on 9 different languages,
including 16 that had previously been made available as UIMA
components by UNIMAN. The resources are listed and described in
Deliverable D2.2 Specification of Pilot Services and Applications.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

10	

METANET4U,	 Project	 CIP	 #270893	 	 	

2) Designing a set of workflows that make use of the UIMA-
wrapped components. UIMA components can be combined flexibly
into workflows. In order to showcase this flexibility and versatility, a
total of 26 specific workflows that make use of the wrapped
components were designed, which are specified in several workflows
Deliverable D2.2 Specification of Pilot Services and Applications. These
workflows have the following purposes. Many of the workflows
constitute multi-stage processes that are fundamental to many NLP
applications (e.g. POS tagging, parsing, named entity recognition) and
thus form building blocks that can be reused, extended and adapted in
the creation of several different applications.

3) Wrapping of the UIMA components. This constitutes the first stage
in the implementation of the workflows. The wrapping process consists
of writing code to ensure that input/output of the selected LRs is
handled in the way required by UIMA. At the heart of the UIMA
framework is a common data structure called the Common Analysis
System (CAS), which can be accessed by all resources at the workflow.
Each UIMA component must obtain its input by reading annotations
(which may correspond to paragraphs, sentences, tokens, etc.) from
the CAS. Output from components is stored by writing new annotations
to the CAS, or else updating existing annotations. Deliverable 4.4 First
Version of Pilot Applications provides more detail about the wrapping
process, as well as providing implementation details of the 15
resources that were newly wrapped as UIMA components between M6
and M12, to complement the 16 resources already wrapped by UNIMAN
that had also been identified as suitable for inclusion within workflows.
In this report, we provide details of the 20 new resources that have
been made available as UIMA components between M13 and M18.
UNIMAN has continued to provide support to partners in creating their
UIMA components.

In order to ensure as much that the UIMA components created during
the METANET4U project are as interoperable as possible, all input and
output annotation types should be compatible with the U-Compare type
system, which is a hierarchy of annotation types that are suitable to
describe inputs/outputs of many NLP resources. Ensuring that all
components use this sharable system of types ensures that the various
components can “understand” each other’s input and output
annotations. U-Compare’s existing library of around 50 components are
already all compliant with this type system. More details about the U-
Compare type system can be found in D2.2 and D4.4.

4) Implementation of the workflows. The workflows specified in
Deliverable D2.2 Specification of Pilot Services and Applications act as
a guide to how the various wrapped UIMA components can be
combined together into workflows to carry out a number of useful NLP

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

11	

METANET4U,	 Project	 CIP	 #270893	 	 	

tasks. In most cases, a particular task can be achieved in several
different ways by using the available LRs in different combinations. As
explained above, experimentation with different versions of workflows
can be undertaken easily by building them using U-Compare’s workflow
canvas. However, we are also making available a number of sample
“implemented” workflows, for each language and task. These take the
form of special files containing ready-made workflows that can be
imported into U-Compare and used immediately. Such workflows can
act as “templates” for carrying out a particular task, that can be
modified (e.g., by substituting alternative components) and extended
as required. In Deliverable 4.4 First Version of Pilot Applications, we
provided a detailed description of how workflows are created using the
U-Compare workbench, and reported on the 10 workflows that could be
implemented using the first batch of released UIMA components, at
least for one or more of the planned languages. In the current
deliverable, we report on the 8 additional workflows that can now be
implemented, now that a second batch of UIMA components. Certain of
the 10 original workflows can now be implemented in a greater number
of languages than was possible at M12, when Deliverable 4.4 First
Version of Pilot Applications was delivered. Since a number of
annotated corpora are being delivered in this second batch of
components, we also provide details about how evaluation workflows
are created.

5) Integration into the digital exchange platform. It is planned to
integrate most of the components into the “core” U-Compare library in
the next stage of the project (where the licences of the individual
components permit this).	 This will mean that, instead of the current
method of downloading and importing the new components
individually, most of the components will be available immediately by
downloading U-Compare via the META-SHARE sight, making it
extremely straightforward to create workflows in several different
languages. Components with licences that are not compatible with the
U-Compare licence will be available to download separately to import
into U-Compare.

The integration phase taking place between M19 and M24 will also
involve making some enhancements to U-Compare itself. Certain
components are reliant on these extensions, whilst other workflows will
benefit from these extensions, such as the ability to see different
“views” of a text side-by-side, e.g. source and target languages in a
machine translation workflow, or a full text and a summary in a
summarisation workflow. In addition, U-Compare can currently only
handle the construction of workflows that process one document at a
time and then move on to the processing of the next document. This
model is not suitable for certain, more complex workflows, such as
producing a single summary from multiple documents. The UIMA

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

12	

METANET4U,	 Project	 CIP	 #270893	 	 	

framework supports the merging of CASes of multiple documents,
which would help to solve this problem. Extending U-Compare to
permit the construction of such workflows is another area that will be
explored during the final phase of the project.

3 Evaluation workflows in U-Compare
In Deliverable D4.4, detailed information was provided about how the 2
basic steps involved in the implementation phase of interoperability work
are carried out, i.e. creating UIMA wrappers for components and using U-
Compare to create U-Compare workflows. Information about creating
specific types of workflows, i.e. evaluation workflows, was, however, left
out of that deliverable. This was because evaluation workflows require
that gold standard annotated corpora are available as UIMA components
and, in Deliverable 4.4, no such components were made available.
However, as part of this deliverable, 4 annotated corpora (3 English and 1
Portuguese) have been made available as UIMA components. These
corpora allow 4 different evaluation workflows to be created, as detailed in
section 5. In this section, we provide details regarding the creation of
evaluation workflows. This section assumes some knowledge about how to
create basic workflows in U-Compare; this information can be found in
Deliverable D4.4.

Evaluation workflows compare (some of) the output annotations of one of
more workflows against the annotations present in a gold standard
annotated corpus. In order to do this, the annotations in the corpus must
be represented as annotations in the CAS, in the same way as the output
of the workflow(s), hence the need for UIMA corpus reader components,
which convert annotations in the corpus into CAS format.

The first step in creating an evaluation workflow is to drag an appropriate
corpus reader component onto the “Collection Readers” section of the U-
Compare workflow canvas. Figure 1 shows an example of this. The
“Outputs” section of the corpus information pane shows the types of
annotations contained within the corpus.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

13	

METANET4U,	 Project	 CIP	 #270893	 	 	

Figure 1: A corpus collection reader component in U-Compare

Evaluation workflows allow the outputs of several different configurations
of a workflow to be compared against the gold standard corpus, e.g. it is
possible to compare the outputs of one or more different POS taggers
against a corpus with gold standard POS annotations, using only a single
workflow.

Any components that are required as pre-processing steps to create the
types of annotations to be compared may be added to the workflow
canvas as normal. However, the component(s) whose outputs are to be
compared must be contained within a special type of component, a
“Parallel Aggregate” component, which should be dragged onto the
workflow canvas from the U-Compare library. Dragging this component
onto the workflow canvas also causes an “Evaluation Iterator” component
to be added automatically, as illustrated in Figure 2.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

14	

METANET4U,	 Project	 CIP	 #270893	 	 	

Figure 2: Evaluation Workflow

In order to perform comparison of annotations, the “Parallel Aggregate”
component must be configured in two ways. Figure 3 shows the
configuration window for this component, which is obtained by clicking on
its icon.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

15	

METANET4U,	 Project	 CIP	 #270893	 	 	

Figure 3: Configuration of parallel aggregate component

The section of the configuration window labelled “Parallel” allows U-
Compare components to be dragged into it. The first step of the
configuration is to drag one or more components into this section, whose
output annotations will be compared against the gold standard

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

16	

METANET4U,	 Project	 CIP	 #270893	 	 	

annotations of the annotated corpus. In figure 3, two different named
entity recognition tools have been dragged onto the component.

The second step of the configuration is to specify in the Parallel Aggregate
component which type(s) of annotations should be compared. This is done
by clicking on the “Add Output Type” button within the “Outputs to
Compare” section. This causes a type system viewer window to be
displayed, from which the appropriate annotation type(s) can be chosen
by clicking on them. In figure 3, the type
org.u_compare.shared.semantic.bio.Protein has been chosen for
comparison, i.e., protein named entity annotations that are output by the
tools will be compared with those in the annotated corpus.

Once the configuration of the Parallel Aggregate component is complete,
the workflow can be run. In the results window, a special table is
displayed that compares the outputs of the relevant tool(s) and the
annotated corpus. An example of this table is shown in figure 4.

	

	

Figure 4: Output of comparison workflow

U-Compare produces pairwise comparisons of the corpus and tools, with
different resources being assumed as the gold standard. Only certain rows
in the table are relevant, i.e. those in which the annotated corpus appears
in the “Assumed Gold Standard” column. In each row, several pieces of
information are shown: the number of relevant annotations in the gold
standard corpus (G), the number of annotations produced by the relevant
tool (T), the number of matching annotations (M), the F1 score, precision
(PR) and recall (RC). These figures can be viewed or the corpus as a
whole, as well as for the individual documents within the corpus.

In order to compare the outputs of the tool(s) with the corpus annotations
in more detail, the annotation viewer on the same screen allows the
annotations produced by the different tools and in the annotated corpus to
be viewed together. This is illustrated in Figure 5.

	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

17	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

Figure 5: Comparison of annotations in the annotation viewer

4 UIMA components delivered
In this section, we provide details of the resources that are included in the
second release of wrapped UIMA components that accompanies this
report. These resources have been wrapped between M13 and M18 of the
project. We also include details about a few resources that were made
available in the first batch of components, but whose
implementation/functionality has been changed or enhanced between M18
and M24.

In general terms, the new language processing components do not cover
extra languages, compared to those released in the first batch. Rather,
they build upon the first batch of components, either by allowing more
sophisticated language processing functionality for a given language, or
else by providing alternative tools to carry out a specific type of
processing that was provided by one of the tools in the first batch. Having
alternative tools to carry out a particular language processing step is
advantageous, since performance of workflows will often vary, according
to which tools are combined together.

Two of the provided tools stand out as being slightly different from the
others. The TTL-LangID does not add any annotations to the CAS, but
rather can identify text as belonging to one of 54 different modern
languages. This can be useful for more fully automated workflows, where
the user does not have to specify the language to be used, where this
would normally be expected as a configuration parameter. The E-txt2db
tool is not a UIMA component itself, but rather a tool that generates UIMA
components. E-txt2db is a language-independent trainable named entity

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

18	

METANET4U,	 Project	 CIP	 #270893	 	 	

recognition system. The tool provided performs both training of models
and automatic generation of UIMA components using the models, making
it extremely straightforward to integrate different trained models into
workflows.

The provision in this batch of 4 UIMA components that are able to read
annotated corpora into the CAS allows for the implementation of a number
of evaluation workflows for English and Portuguese. Each of the three
corpora (GENIA, GENIA event and GREC corpora for English, CINTIL
corpus for Portuguese) contain different types of syntactic and/or
semantic annotations. These act as gold standard annotations, against
which annotations produced by various workflows can be compared and
evaluated.

The UIMA-wrapped resources provided as part of this deliverable are in
the form of Java Archive (jar) files or web service descriptors, which can
easily be imported and tested in U-Compare. As mentioned above, many
of these components will be integrated into U-Compare’s core library
during the final phase of the project, to make them even easier to use.
For now, importing must be carried out, following the steps outlined in
D4.4.

In the remainder of this section, we provide details of the 20 resources
that constitute this second delivery of UIMA components. The resources
are grouped according to the contributing partner, and in the same way as
in D4.4, the following details are provided for each resource

• Brief description of the resource
• Languages handled/covered by the resource
• Input/output data types of the resource
• Corresponding U-Compare types used for input/output in the

wrapped component. In the case that one or more of the types is an
extension (subtype) of a type in the core U-Compare type system,
this is indicated.

• Details about the U-Compare types used. These details include, e.g.,
whether the original type system was sufficient without
modifications, whether the types used in the implemented
component are different from those envisaged in D2.2, which new
subtypes were created, and why, etc.

• Any relevant details or issues regarding the implementation of the
wrapper code.

Three components provided in the first release of UIMA components, but
whose implementation details have changed since the first batch, are also
listed, together with the changes in implementation that have been
carried out.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

19	

METANET4U,	 Project	 CIP	 #270893	 	 	

The jar files and web service descriptors corresponding to the newly
wrapped resources have been uploaded onto the METANET4U intranet at
the following location:

http://metanet4u.eu/intranet/index.php/WPS_-
Webservices%28coord:_Sophia%29#Currently_wrapped_components

Components that were made available in the first release, as detailed in
D4.4, are also available at the same location.

4.1 University of Lisbon (ULX)
	

4.1.1 Tools	

LX-Tokenizer (Updated from D4.4)

Description: Splits sentences into tokens. In addition, it expands
contractions, marks spacing around punctuation or symbols, detaches
clitic pronouns verbs, and handles ambiguous strings.
Languages covered: Portuguese
Original resource implementation: Web service
Input: Sentences
U-Compare input type: org.u_compare.shared.syntactic.Sentence
Output: Tokens, with additional information as described above
U-Compare output type:
pt.ul.fc.di.nlx.LXToken (subtype of
org.u_compare.shared.syntactic.POSToken)
U-Compare type details: The original UIMA wrapped component, made
available as part of D4.4, used the output annotation type
org.u_compare.shared.syntactic.Token. This annotation type is only
sufficient to encode basic token information. However, the LX-Tokenizer
web service outputs richer information than only basic tokens. Some
examples of this extended functionality include expanding contractions
and detaching clitic pronouns from verbs. In order for this information not
to be lost in the U-Compare component, the component has been updated
during this second phase of implementation. A new annotation type has
been created, i.e., pt.ul.fc.di.nlx.LXToken, which is an extension of
the annotation type org.u_compare.shared.syntactic.POSToken (since
the extra information stored is also used by the LX-Tagger component,
which adds POS tags to the LXToken annotations. The
pt.ul.fc.di.nlx.LXToken type adds a new string-valued attribute,
expadnedForm, which allows the full forms of words that have undergone
some sort of contraction to be stored as part of the token annotation.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

20	

METANET4U,	 Project	 CIP	 #270893	 	 	

This information is required by the LX-Tagger component, and so its
storage is needed in order to create more complex workflows for
Portuguese.
Implementation details/issues: The tool is implemented as a web
service, LXService. In order to implement the U-Compare component, the
web service is invoked through a package, available as lxServiceClient.jar,
which must be placed in the classpath of U-Compare. Its constructor
requires one parameter related to the authentication of the client, namely
the client’s username, as this is registered at the LXService database of
clients. We have created a new user in this database for U-Compare. The
output of the call to web service is then converted to the format required
by U-Compare.

LX-POSTagger

Description: Assigns part-of-speech tags to tokens. Requires
information about the full forms of contracted words, as produced by the
LX-Tokenizer component. Hence, the LX-Tokenizer must be run prior to
this component in a workflow.
Languages covered: Portuguese
Original resource implementation: Web service
Input: Tokens in which contracted forms have been expanded
U-Compare input type: pt.ul.fc.di.nlx.LXToken (subtype of
org.u_compare.shared.syntactic.POSToken)
Output: Tokens, with parts-of-speech assigned
U-Compare output type:
pt.ul.fc.di.nlx.LXToken (subtype of
org.u_compare.shared.syntactic.POSToken)
U-Compare type details: In D2.2, it was planned that this component
would originally take annotations of type
org.u_compare.shared.syntactic.Token. However, as described in the
LX-Tokenizer entry above, this annotation type cannot store all the
information required as input to the LX-Tagger, hence the creation of the
pt.ul.fc.di.nlx.LXToken annotation type. Since this annotation type is
an extension of pt.ul.fc.di.nlx.LXToken, the output annotation type
can remain the same as the input type – all that is required is to set the
value of the posString attribute, to record the part-of-speech tag
assigned by the LX-Tagger.
Implementation details/issues: The tool is implemented as a web
service, LXService. In order to implement the U-Compare component, the
web service is invoked through a package, available as lxServiceClient.jar,
which must be placed in the classpath of U-Compare. Its constructor
requires one parameter related to the authentication of the client, namely
the client’s username, as this is registered at the LXService database of
clients. We have created a new user in this database for U-Compare. The
output of the call to web service is then converted to the format required
by U-Compare.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

21	

METANET4U,	 Project	 CIP	 #270893	 	 	

LX-Tagger

Description: An alternative part–of-speech tagger for Portuguese, which
operates on plain, unannotated text. Tokenization and part-of-speech
tagging are both performed by this tool.
Languages covered: Portuguese
Original resource implementation: Web service
Input: Plain text
U-Compare input type: N/A
Output: Tokenised text with parts-of-speech assigned
U-Compare output type:
org.u_compare.shared.syntactic.POSToken
U-Compare type details: The input and output types belong to the U0-
Compare type system, as originally envisaged in D2.2
Implementation details/issues: The tool is implemented as a web
service, LXService. In order to implement the U-Compare component, the
web service is invoked through a package, available as lxServiceClient.jar,
which must be placed in the classpath of U-Compare. Its constructor
requires one parameter related to the authentication of the client, namely
the client’s username, as this is registered at the LXService database of
clients. We have created a new user in this database for U-Compare. The
output of the call to web service is then converted to the format required
by U-Compare.

4.1.2 Corpora	
	

CINTIL Corpus

Description: This component provides excerpts from CINTIL-Corpus
Internacional do Português. This corpus is a linguistically interpreted
corpus of Portuguese. Excerpts are composed of 15,992 annotated tokens,
each one of which is verified by human expert annotators.
Languages covered: Portuguese
Annotation types: Sentences, POS tags
U-Compare annotation types:
org.u_compare.shared.syntactic.POSToken
org.u_compare.shared.syntactic.Sentence
U-Compare type details: The annotation types are the same ones
originally planned in D2.2. They are types belonging to the original U-
Compare type system.
Implementation details/issues: No issues encountered –
straightforward implementation of UIMA reader for the corpus 	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

22	

METANET4U,	 Project	 CIP	 #270893	 	 	

4.2 IST – Instituto Superior Técnico

E-txt2db components

Description: In contrast to all other tools listed, the tool provided is not a
UIMA component itself, but rather automatically generates named entity
tagger UIMA components through training using the E-txt2db Component
Generator
Languages covered: Any (according to the training data)
Original resource implementation language: Java
Input: Depends on the component, either plain text or text with
annotations already added.
U-Compare input type: The E-txt2db Component Generator allows for
the generation of named entity tagger UIMA components that receive
plain text as input. However, it also allows for the generation of named
entity taggers that rely on other annotations (e.g. Token can be used to
perform tokenization, Sentence can be used to split the text into
sentences, POSToken can be used as a feature to help in the tagger's
decision).
Output: Named entity annotations, according to observations in the
training data
U-Compare output type: etxt2db.annotators.NamedEntityTyped
(extends org.u_compare.shared.semantic.NamedEntity)
The components produce named entities according to what was observed
in the training data.
U-Compare type details: The output type produced is not the originally-
planned U-Compare type
(org.u_compare.shared.semantic.NamedEntity), because that type of
annotation does not contain a field corresponding to the tag of entity
produced. Since the tool can be trained to recognize a potentially infinite
set of named entity types, it was not a practical solution to create new
types for each different type of named entity. Instead, the type
etxt2db.annotators.NamedEntityTyped was created, which provides a
string-valued field to store the type of the named entity recognised.
Implementation details/issues: Creating the code for the generated
components themselves was straightforward. The challenge was to
produce the components automatically through training (E-txt2db
Component Generator). The solution used produce components
automatically was to develop methods to produce XML files corresponding
to the descriptor of the component that uses the model that is produced
by E-txt2db during the training phase.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

23	

METANET4U,	 Project	 CIP	 #270893	 	 	

4.3 University of Manchester – UNIMAN

4.3.1 Tools	
	

Apertium Morphological Analyser (Updated from D4.4)

Description: Tokenises text and assigns one or more possible part-of-
speech-tags/morphological analyses to each token.
Languages covered: English, Portuguese, Spanish, Catalan, Galician,
Basque
Original resource implementation: Java port of original C++ code.
Input: Plain text
U-Compare input type: N/A
Output: One or more morphological analyses for each token, consisting of
part-of-speech tags, together with morphological information, such as
base form, person, number and gender.
U-Compare output type:
org.u_compare.shared.syntactic.ApertiumToken [subtype of
org.u_compare.shared.syntactic.POSToken]
U-Compare type details: The type
org.u_compare.shared.syntactic.POSToken has been extended to
allow the additional morphological information produced by the Apertium
morphological analyser to be stored as part of the annotation.
Implementation details/issues: This is one module of the Apertium
machine translation system (third-party, open-source software). The
version of the wrapper delivered as part of D4.4 suffered from robustness
issues, such as crashing when blank lines or slashes were encountered in
the input text. The component has been more thoroughly tested, and
these and other bugs have been eliminated. In addition, the use of the
component has been made more straightforward for users. Instead of
having to provide a path to linguistic data file, the data files for the
languages relevant to the project are included within the component jar
file. All the user now has to do is to specify an appropriate language pair
as a parameter. The possible values are "en-es", "es-en", "gl-es", "es-gl",
"es-pt", "pt-es", "es-ca", "ca-es", "es-ro" and "eu-es". The reason for
specifying a language pair is that this is a module of the Apertium
machine translation system. The morphological analyser can, however, be
used independently of the translation module. In this case, the code for
the language to be analysed must be the first one in the pair. The original
version of the component specified Romanian as a possible language.
However, the quality of the output was found to be poor, and so this
language has been removed.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

24	

METANET4U,	 Project	 CIP	 #270893	 	 	

Apertium Tagger (Updated from D4.4)

Description: Determines the most appropriate part-of-speech
tag/morphological analysis for each token in a text, from amongst
possible analyses output by the Apertium morphological analyser module
(see above)
Languages covered: English, Portuguese, Spanish, Catalan, Galician,
Basque, Romanian
Original resource implementation: Java port of original C++ code.
Input: Morphologically analysed text (analysis MUST be produced by
running the Apertium Morphological Analyser prior to this component)
U-Compare input type:
org.u_compare.shared.syntactic.ApertiumToken [subtype of
org.u_compare.shared.syntactic.POSToken]
Output: One or more morphological analyses for each token, consisting of
part-of-speech tags, together with morphological information, such as
base form, person, number and gender.
U-Compare output type:
org.u_compare.shared.syntactic.ApertiumToken [subtype of
org.u_compare.shared.syntactic.POSToken]
U-Compare type details: The type
org.u_compare.shared.syntactic.POSToken has been extended to
allow morphological information to be stored about tokens.
Implementation details/issues: This is one module of the Apertium
machine translation system (third-party, open-source software). The
component wrapper delivered with D4.4 has been improved in a couple of
ways. Firstly, the information stored in the output annotations has been
stored to make in more understandable/readable by users. Rather than
storing the “raw” information output by Apertium within these
annotations, which combines base forms, morphology and POS tags in a
specific format, this information has been separated and is stored
separately as the values of the “base”, “morphology” and “POSString”
attributes of the ApertiumToken annotations, respectively. In addition,
the use of the component has been made more straightforward for users.
Instead of having to provide a path to linguistic data file, the data files for
the languages relevant to the project are included within the component
jar file. All the user now has to do is to specify an appropriate language
pair as a parameter. The possible values are "en-es", "es-en", "gl-es",
"es-gl", "es-pt", "pt-es", "es-ca", "ca-es", "es-ro" and "eu-es". The reason
for specifying a language pair is that this is a module of the Apertium
machine translation system. The tagger can, however, be used
independently of the translation module. In this case, the code for the
language to be analysed must be the first one in the pair. The original
version of the component specified Romanian as a possible language.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

25	

METANET4U,	 Project	 CIP	 #270893	 	 	

However, the quality of the output was found to be poor, and so this
language has been removed.

Apertium Translator

Description: Given morphologically analysed and POS tagged text,
outputs translated text with morphological analyses and POS tags
attached.
Languages covered: English, Portuguese, Spanish, Catalan, Galician,
Basque.
Original resource implementation: Java port of original C++ code.
Input: Morphologically analysed and POS tagged text (MUST be produced
by running the Apertium Morphological Analyser and Apertium tagger in a
pipeline, prior to this component)
U-Compare input type:
org.u_compare.shared.syntactic.ApertiumToken [subtype of
org.u_compare.shared.syntactic.POSToken]
Output: Alternative view of the text (second “sofa” (subject of analysis)
in UIMA parlance), containing translated text with morphological analyses
and POS tags attached.
U-Compare output type:
org.u_compare.shared.syntactic.ApertiumToken [subtype of
org.u_compare.shared.syntactic.POSToken] in the targetSofa view of
the text.
U-Compare type details: The type
org.u_compare.shared.syntactic.POSToken has been extended to
allow the additional morphological information to be stored about tokens
in the source and target language text.
Implementation details/issues: This component is provided instead of
the separate “Apertium MT Transfer” and “Apertium Morphological
Generator” components that were originally planned in D2.2. The plan was
for the MT transfer component to generate base forms in the target
language with morphological information attached, whilst the
morphological generator would generate appropriate inflected forms.
However, this turned out not to be practical, as it is problematic to change
the document text in a sofa once it has been set (i.e., to change base
forms to inflected forms). Thus, the components were combined, so that
the correctly inflected text is set as document text in the targetSofa,
“ApertiumToken” annotations are created for each token in the targetSofa,
and morphological and POS tags are set as attributes of the annotation.
Using the current version of U-Compare, this component can be run as
part of a workflow, but the targetSofa cannot yet be viewed (this
extension to U-Compare is planned during the final 6 months of the
project). However, at present, the targetSofa can be viewed by saving the

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

26	

METANET4U,	 Project	 CIP	 #270893	 	 	

output of the workflow to an XMI file (by adding an “Xmi Writer CAS
consumer” to the end of the workflow). Then, the XMI file can be viewed
using the UIMA Annotation Viewer, which supports viewing of mulitiple
sofas. The Apertium Translator component requires a language pair to be
specified as a parameter. The possible values are "en-es", "es-en", "gl-
es", "es-gl", "es-pt", "pt-es", "es-ca", "ca-es" and "eu-es".

Cafetiere Sentence Splitter (New component not mentioned in
D2.2)

Description: Given plain text, outputs sentence boundaries
Languages covered: English
Original resource implementation: Java
Input: Plain text
U-Compare input type: N/A
Output: Text with sentence boundaries marked
U-Compare output type: org.u_compare.shared.syntactic.Sentence
U-Compare type details: This simple component output annotation
belonging to an existing U-Compare type.
Implementation details/issues: Straightforward wrapping of a simple
sentence splitting tool that was already implemented in Java.
NOTE: This component replaces the NaCTeM sentence breaker in
workflows, due to a potential licensing issue with the NaCTeM sentence
breaker.

4.3.2 Corpora	
	

GENIA Corpus

Description: 1,999 Medline abstracts in the biomedical domain annoted
with various types of linguistic information
Languages covered: English
Annotation types: POS tags, Named Entities, co-reference, treebank
annotations
U-Compare annotation types:
org.u_compare.shared.syntactic.POSToken,
org.u_compare.shared.semantic.NamedEntity,
org.u_compare.shared.semantic.Constituent,
org.u_compare.shared.semantic.CoreferenceAnnotation
U-Compare type details: The annotation types are the same ones
originally planned in D2.2. They are types belonging to the original U-
Compare type system.
Implementation details/issues: No issues encountered –
straightforward implementation of UIMA reader for the corpus 	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

27	

METANET4U,	 Project	 CIP	 #270893	 	 	

GENIA Event Corpus

Description: 1000 abstracts of the GENIA corpus. It contains 9,372
sentences in which 36,114 events are identified. New layers of annotation
(meta-knowledge) have been added as part of the METANET4U project to
allow advanced information extraction involving opinion mining,
inconsistency and contradiction checking, entailment and hedging.
Languages covered: English
Annotation types: Named Entities, Biomedical events, Meta-knowledge
annotation
U-Compare annotation types:
org.u_compare.shared.semantic.NamedEntity,
jp.ac.u_tokyo.s.is.www_tsujii.corpus.genia.GeniaEventAnnotation
[subtype of org.u_compare.shared.semantic.EventAnnotation],
org.u_compare.shared.semantic.MetaKnowledgeEvent
[subtype of org.u_compare.shared.semantic.EventAnnotation]
U-Compare type details: The annotation types are the same ones
originally planned in D2.2. They are types belonging to the original U-
Compare type system.
Implementation details/issues: No issues encountered –
straightforward implementation of UIMA reader for the corpus 	

	
GREC Corpus

Description: 240 MEDLINE abstracts annotated with gene regulation
events arranged around verbs and nominalised verbs. A rich set of 13
semantic role types are used to characterize the event arguments. Named
entities within event arguments are also identified.
Languages covered: English
Annotation types: Named Entities, Biomedical events, Meta-knowledge
U-Compare annotation types:
org.u_compare.shared.semantic.NamedEntity,
org.u_compare.shared.semantic.EventAnnotation,
org.u_compare.shared.semantic.MetaKnowledgeEvent
[subtype of org.u_compare.shared.semantic.EventAnnotation]
U-Compare type details: The annotation types are the same ones
originally planned in D2.2. They are types belonging to the original U-
Compare type system.
Implementation details/issues: No issues encountered –
straightforward implementation of UIMA reader for the corpus
	
	
	
	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

28	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

4.4 University Alexandru Ioan Cuza (UAIC)
	

4.4.1 Tools	
	

UAIC POS tagger (New component not mentioned in D2.2)

Description: This tool integrates a sentence splitter a tokenizer and a pos
tagger. It takes as input raw text.
Languages covered: Romanian, English
Input: Plain text
U-Compare input type: N/A
Output: sentences tokens and pos taggs
U-Compare output type: org.u_compare.shared.syntactic.Sentence
RichToken
U-Compare type details: All output types are U-Compare types
Implementation details/issues: The reason for the integration of the
sentence splitter, tokenizer and pos tagger as one tool is that the internal
components share a huge dictionary. It is recommended to use this tagger
in conjunction with other UAIC tools, because the tagset used by this
tagger is not 100% compatible with RACAI’s pos tagger. Many tools have
never been tested with RACAI’s tagger, or have been trained using output
from UAIC POS tagger.

	

Splitter-UAIC v1

Description: Identifies segments in sentences. For example “John saw,
although he didn't expect, that he had a lot of money/.”, would be split
into 3 segments, “John saw”, “although he didn’t expect” and “that he had
a lot of money”.
Languages covered: Romanian, English
Input: Plain text
U-Compare input type: N/A
Output: segments, as explained above
U-Compare output type: org.u_compare.shared.document.Fragment
U-Compare type details: It was originally thought that a new U-
Compare type may be needed. However, closer examination of the U-
Compare type system revealed that a suitable type existed.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

29	

METANET4U,	 Project	 CIP	 #270893	 	 	

Implementation details/issues: No problems encountered -
straightforward wrapping, given compatibility between original
implementation language and UIMA.

Splitter-UAIC v2 (UaicClauseSplitter) (New component not
mentioned in D2.2)

Description: Identifies segments in sentences. For example “John saw,
although he didn't expect, that he had a lot of money/.”, would be split
into 3 segments, “John saw”, “although he didn’t expect” and “that he had
a lot of money”.
Languages covered: Romanian
Input: Sentences, pos tagged tokens, and NP chunks (optional)
U-Compare input type: org.u_compare.syntactic.Sentence,
org.u_compare.syntactic.RichToken,
uaic.uimatypes.NpChunkWithHead(optional)
Output: segments, as explained above
U-Compare output type: uaic.uimatypes.Clause
U-Compare type details: Since the Clause type is more relevant for a
node structure rather than a sentential clause annotation, the decision
was to make another uaic type.
Implementation details/issues: Both variants (for English and
Romanian) of the clause splitter have been trained to recognise clause
boundaries from manually annotated gold corpora. The model uses as
features: pos-tags and discourse markers. A clause boundary could not
reside in-between the limits of a NP. The English variant is currently
undergoing testing; the component will be updated to provide functionalty
for English prior to the end of the project.

FDG-parser-UAIC

Description: Functional Dependency Grammar parser
Languages covered: Romanian
Input: POS-tagged text and sentence markers
U-Compare input type: org.u_compare.shared.syntactic.Sentence,
org.u_compare.shared.syntactic.RichToken
Output: FDG dependencies between words belonging to the same
sentence
U-Compare output type:
org.u_compare.shared.syntactic.ConllDependency
U-Compare type details: In D2.2, it was stated that a subtype of
org.u_compare.shared.syntactic.Dependency may be required to
encode the output of this component. Since this parser was developed for
the CoNLL shared task, the subtype

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

30	

METANET4U,	 Project	 CIP	 #270893	 	 	

org.u_compare.shared.syntactic.ConllDependency has been used,
which is already part of the U-Compare type system. The output type also
contains the start and end features from Annotation but they are not to be
used.
Implementation details/issues: In D2.2, it was erroneously stated that
this component operates on both English and Romanian, but actually it
only operates on Romanian.

NP-chunker-UAIC

Description: Detects noun phrases
Languages covered: Romanian
Input: POS-tagged text
U-Compare input type: org.u_compare.shared.syntactic.RichToken
Output: NP chunks
U-Compare output type: uaic.uimatypes.NpChunkWithHead
U-Compare type details: The output type is an extension of
org.u_compare.shared.syntactic.chunk, which allows the head of each
NP to be stored.
Implementation details/issues: In D2.2, it was erroneously stated that
this component requires FDG parse results, in addition to POS-tagged
output. Whilst it was originally envisaged that this component would
operate on both Romanian and English, it currently operates only on
Romanian.

Summarizer-UAIC

Description: Provides a summary of text
Languages covered: Romanian, English
Input: Sentence segments
U-Compare input type: org.u_compare.shared.document.Fragment
Output: A summary of the text
U-Compare output type: No output annotations as such; the output
summary is stored as an alternative view of the text, i.e., in a second sofa
called Summary.
U-Compare type details: No new types needed to be defined for this
component, given that the multiple sofa approach was used, rather than
defining a new type to hold the summary as an annotation in the original
sofa.
Implementation details/issues: The solution used by this component
to store the summary is similar to the one chosen to store text that is
automatically translated by the Apertium Translator component, as
described above. As was also explained above, the current version of U-
Compare allows components that produce multiple text views to be run,
but the output of new sofas created by the component cannot yet be

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

31	

METANET4U,	 Project	 CIP	 #270893	 	 	

visualized. Whilst an extension to U-Compare to allow this multiple sofas
to be viewed using the interface is planned to be completed before the
end of the project, at present, an alternative solution must be used to
verify the output of this component. The output of the workflow can be
saved to an XMI file by adding an “Xmi Writer CAS consumer” to the end
of the workflow). Then, the XMI file can be viewed using the UIMA
Annotation Viewer, which supports viewing of multiple sofas.
NOTE: A more complex version of the summarizer, which makes use of
the output of DP-UAIC (see below) will be provided prior to the end of the
project.

DP-UAIC

Description: Discourse Parser. Produces discourse trees for an input text.
Languages covered: Romanian
Input: Sentences, Tokens, POS tags, clause phrases (output of Splitter-
Uaic v2), NP chunks (optional), co-reference chains (optional; output of
RARE-UAIC)
U-Compare input type:
org.u_compare.shared.syntactic.Sentence,
org.u_compare.shared.syntactic.Token
org.u_compare.shared.semantic.CoreferenceAnnotation,
uaic.uimatypes.Clause,
uaic.uimatypes.NpChunkWithHead (Optional)
org.u_compare.shared.semantic.CoreferenceAnnotation (Optional)
Output: Discourse trees
U-Compare output type: uaic.uimatypes.DiscourseNode
U-Compare type details: The output is represented as a binary tree of
DiscourseNode annotation types. A suitable type did not exist in the
existing U-Compare type system, and so this new type was added.
Implementation details/issues: The nodes which do not have children
(leaf nodes) resemble a clause (which is accessible through the Clause
feature). Each specifies its parent vein and its heads. A version of this
component that can also handle English will be provided prior to the end
of the project.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

32	

METANET4U,	 Project	 CIP	 #270893	 	 	

4.5 RACAI – Romanian Academy

4.5.1 Tools	
	

RACAI Language Identifier

Description: This is a UIMA, U-Compare compatible wrapper to the
RACAI’s language identifier (LangID) web service hosted at
http://www.racai.ro/webservices/LangId.asmx. LangID is able to identify
54 commonly known languages (Afrikaans, Alemannic German, Arabic,
Azerbaijani, Bavarian, Belarusian, Bosnian, Breton, Bulgarian, Catalan,
Chinese (Standard), Croatian, Czech, Danish, Dutch, English, Esperanto,
Estonian, Filipino, Finnish, French, Galician, German, Greek, Hebrew,
Hungarian, Indonesian, Irish Gaelic, Italian, Japanese, Korean, Latin,
Latvian, Lithuanian, Maltese, Norwegian, Occitan, Polish, Portuguese,
Romanian, Russian, Serbian, Serbo-Croatian, Sicilian, Slovak, Slovene,
Spanish, Swedish, Thai, Turkish, Ukrainian, Volapük, Welsh, Yiddish) and
3 rare languages (Aweti, Beaver, Teop). However, the U-Compare
component is hardcoded to not recognize the rare languages.
Original resource implementation language: C# under Microsoft .NET
Input: Input data must be UTF-8 encoded text, which should be large
enough to ensure correct language detection. The recommended size is
around a couple of substantial paragraphs.
U-Compare input type: None. The LangID U-Compare component
simply gets the text of the input document (via JCas.getDocumentText())
which it passes to the web service for language recognition.
Output: The language code conforming to ISO 639-1 or the value
‘uncertain’ if the confidence threshold was too low (smaller than 0.7,
hardcoded value). This can happen if the input text is too short and/or the
languages are alike (e.g. Croatian vs. Slovene vs. Serbian).
U-Compare output type: None. The U-Compare component simply sets
the recognized language on the input document via
JCas.setDocumentLanguage().
U-Compare type details: No U-Compare types were used.
Implementation details/issues: Straightforward UIMA wrapper around
the web service. The LangID component can be added to the beginning of
a workflow consisting of the other TTL components that were provided in
D2.2 (Tokenizer, Tagger, Lemmatizer, Chunker) in order to determine the
correct configuration of the components to use (Romanian, English or
French) without having to set this manually. The LangID component could
also be used for other types of components that can handle more than
one language.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

33	

METANET4U,	 Project	 CIP	 #270893	 	 	

4.6 University of Malta (UOM)

4.6.1 Tools	
	
MLRS Part-of-speech tagger
Description: Assigns parts-of-speech, given normal text
Languages covered: Maltese
Original resource implementation: Java application
Input: Plain text
U-Compare input type: Plain text
Output: Tokens with parts of speech assigned

U-Compare output type:
org.u_compare.shared.syntactic.POSToken.
U-Compare type details: This is originally planned output type. The
existing U-compare type is sufficient for the output of this tool, without
any need for extension.
Implementation details/issues:
TNT, a third-party software is used for training and tagging the text. This
software imposes some restrictions on the execution environment,
namely:

- it has to be run under Linux, and
-as input, it takes text file with one word per line

We eventually decided that this component be implemented, and made
available through a web-service.

This was decided after several other attempts:

1st Attempt: We first started with a small program which (i) takes an
input (text), (ii) formats it for TNT, (iii) executes the tagger using bash
commands, and (iv) reads back the output. After testing this, it was then
wrapped as a U-Compare component. Testing this component through
Eclipse worked; but when exporting this as a standalone component (.jar)
to be included in the U-Compare library, the component failed to execute.

2nd Attempt: Assuming that the 1st attempt failed because of insufficient
permissions, another attempt was made. A web-service was implemented
which takes text as input and return its tagged equivalent. The U-
Compare component then reads the text from the CAS, calls the web-
service, and adds the results back to the CAS. The component was then
first tested through Eclipse. Similarly to the first attempt, the component
worked when tested through Eclipse, but failed to work when tested as a
standalone component.

3rd Attempt: Assuming that the 2nd attempt also failed due to insufficient

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

34	

METANET4U,	 Project	 CIP	 #270893	 	 	

permissions, we decided to adopt the 1st attempt's implementation, but
have the whole component running on a server and deployed as a web-
service (using a deployment script that comes with UIMA). This way, the
component would have the necessary permissions to execute. This was
then tested through a client Java application, which makes use of the
component and everything seemed to work as expected.

4.7 UPC - Universitat Politècnica de Catalunya
UPC is not delivering any new components at this point. The Ogimos text-
to-speech tool is planned for delivery as a UIMA component during the
lifetime of the project. However, the development of this component is
dependent on new functionality being added to U-compare that will allow
speech files to be played. Since this enhancement to U-Compare is
planned during the coming months, Ogimos will be implemented as a
UIMA component when the new U-Compare functionality is available.

4.8 UPF- Universitat Pompeu Fabra
	
The main involvement of UPF is in the PANACEA workflow system.
However, the plan has been for UNIMAN to work on making available
some of their PANACEA web services as UIMA components, as time
permits, since these provide a basic set of processing tools for the Spanish
and Catalan languages, including tokenization, morphological analysis,
tagging and parsing. A total of 8 potential web services were identified in
Deliverable 2.2. Of these, 2 have currently been implemented as web
services by UNIMAN. The implementation of the remaining services as
UIMA components should be more straightforward, and implementation of
these is planned during the final phase of the project.

Iula_tokenizer
Description: Tokenizes plain text. Also identifies sentence and
paragraph boundaries, and recognizes proper names.
Languages covered: Spanish, Catalan
Original resource implementation: Java application
Input: Plain text
U-Compare input type: N/A
Output: Paragraphs, sentences, tokens are named entities.
U-Compare output type:
org.u_compare.shared.document.text.Paragraph
org.u_compare.shared.syntactic.Sentence
org.u_compare.shared.syntactic.Token
org.u_compare.shared.semantic.NamedEntity
U-Compare type details: Only Token annotations were originally
planned as output annotations for this component in D2.2. However, at

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

35	

METANET4U,	 Project	 CIP	 #270893	 	 	

that point, the information about the web service output had been
obtained by looking only at the documentation for the service. Subsequent
experimentation with the service has revealed that a greater range of
annotations are output than originally anticipated, hence the increased
range of U-Compare output annotation types.
Implementation details/issues: No specific issues encountered.

Iula_tagger
Description: Tokenizes plain text and assigns part of speech tags. Also
identifies sentence and paragraph boundaries, and recognizes proper
names.
Languages covered: Spanish, Catalan
Original resource implementation: Java application
Input: Plain text
U-Compare input type: N/A
Output: Paragraphs, sentences, tokens are named entities.
U-Compare output type:
org.u_compare.shared.document.text.Paragraph
org.u_compare.shared.syntactic.Sentence
org.u_compare.shared.syntactic.POSToken
org.u_compare.shared.semantic.NamedEntity
U-Compare type details: Only POSToken annotations were originally
planned as output annotations for this component in D2.2. However, at
that point, the information about the web service output had been
obtained by looking only at the documentation for the service. Subsequent
experimentation with the service has revealed that a greater range of
annotations are output than originally anticipated, hence the increased
range of U-Compare output annotation types.
Implementation details/issues: No specific issues encountered.

5 Workflows delivered or updated at M18
The resources that have been wrapped as U-Compare components, as
detailed in the last section, can currently be combined together into
workflows to perform 18 out of the 26 NLP tasks that were specified in
Deliverable 2.2. Several of these workflows can operate on multiple
languages and can use various combinations of components developed by
different partners. The 20 new UIMA components available as part of this
deliverable have added 8 additional workflows to those that could be
implemented with the components delivered as part of deliverable D4.4.
The new workflows generally constitute more sophisticated language
processing tasks, or evaluation workflows that are possible due to the new
availability of gold standard annotated corpora as UIMA components. In
addition, certain workflows that could already be implemented at M12 can

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

36	

METANET4U,	 Project	 CIP	 #270893	 	 	

now be implemented using alternative components and/or they operate in
a greater number of languages.

For most workflows, a potentially large number of “paths” through the
workflow are possible, given that multiple components can be substituted
at each step. In D2.2, a set of conceptual diagrams were provided, which
illustrated all possible perceived paths though these 26 tasks, using the
components that were planned to be made available during the
METANET4U project. The diagrams showed which components could be
used to move from one state of the workflow to the next (e.g., to move
from sentence annotations to token annotations) for different languages.
Therefore, for each task, a potentially very large number of workflows
would be possible by choosing different possible components at each
stage of the workflow.

As has been illustrated above, workflows can be constructed easily in U-
Compare by dragging components from the library onto the workflow
canvas, in a particular order. Therefore, the diagrams can be used as a
guide to the possible workflows that could be built using the components
that are being made available in METANET4U.

Particular workflows can be exported from U-Compare as single files
(“ucz” or U-Compare zip files). As part of this deliverable, we provide a
set of sample “implemented” workflows as ucz files, which can be
imported into U-Compare, to complement those already provided as part
of D4.4. The new workflows provided as part of this deliverable make use
of one of more components that have been wrapped as UIMA components
since D4.4. As was the case for D4.4, given the large number of potential
alternative workflows that can be created for each NLP task, we do not
provide an exhaustive set of all possible implemented workflows. Rather,
we include a selection of sample implemented workflows, consisting of at
least one workflow for each task-language pair (e.g. tokenisation-
Maltese). The sample workflows are currently available on the
METANET4U intranet: http://metanet4u.eu/intranet/index.php/WPS_-
Webservices%28coord:_Sophia%29#Sample_workflows

The aim of this sample set is to provide a set of easily importable and
immediately usable workflows for different tasks and languages. These
workflows can act as templates that the user can subsequently, change,
extend or configure, by substituting different components. The idea is that
such templates make it easier for users to experiment with different
configurations of workflows, than having to build them from scratch.
Where possible, each sample workflow combines components developed
by different partners, in order to highlight the ease of interoperability that
can be achieved through the use of UIMA wrapping and U-Compare.

On the following pages, conceptual diagrams are shown of the 18
workflows for which at least one of the potential paths can be constructed,

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

37	

METANET4U,	 Project	 CIP	 #270893	 	 	

using the UIMA components that are currently available. The format of
these diagrams is the same as those shown in D4.4, but the description of
the diagrams is again provided below.

The circles in the diagrams represent the possible different information
states that can occur between the input information state and the output
information state. Lines represent the possible ways to move between the
information states. Each line is labelled with the individual components
that can be used to produce the information to move between one state
and the next. For example, a part-of-speech tagger can be used to move
from the “token” state to the “POS” state. Each resource is represented in
the diagrams as a number, with a full description in the legend, as
follows:

<partner_short_name>:<tool_name>:<languages_covered>

For example, ULX:Chunker:pt, represents the chunker tool developed by
the University of Lisbon, which works on the Portuguese language.

Each workflow diagram shows all possible tools that can be used to carry
out each step of the processing in all of the available languages, including
those that have not yet been implemented as U-Compare components.
Only if the complete workflow can be carried out for a particular language
are the tools for that language displayed in the diagram. For example,
lemmatization is not possible for Portuguese, and so no Portuguese tools
are shown in the lemmatization workflow, even though most of the
intermediate steps can be carried out using Portuguese tools. This makes
it straightforward to determine exactly which types of workflow are
currently possible for each language.

In the diagrams, some lines skip individual states. This is because of the
different processing capabilities of different tools. For example, some part-
of-speech taggers may require tokenized text as input, whilst other
taggers may operate directly on plain text, and perform tokenization as an
integral part of the tool.

5.1 Augmented workflows

The diagrams in this section correspond to workflows that could already
be partially implemented in D4.4, but for which certain languages or paths
through the workflow were not possible at that time. The diagrams
provided here indicate how workflows are more fully implementable now
that the extra UIMA components have been made available. The features
of the diagrams are as follows:

• Resources that have already been wrapped are shown in black text.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

38	

METANET4U,	 Project	 CIP	 #270893	 	 	

• Any new components that have been made available since D4.4 are
indicated using italics.

• Resources that have not yet been wrapped as UIMA components are
shown using red text.

• Grey arrows indicate which of the planned transitions between
information states that are not currently possible at all (due to a
lack of available wrapped components).

• Languages that were planned for a particular workflow, but which
are not currently possible are shown in red.

• Any newly supported languages since D4.4 are shown using italics.
Languages that are newly supported through the availability of new
components are underlined.

• Any changes to planned components or their usage since D4.4 are
indicated using bold font. These changes may include extra
components that were not originally planned, or else a change in the
planned usage of the component (i.e., at a different place in the
workflow).

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

39	

METANET4U,	 Project	 CIP	 #270893	 	 	

 	 	

Key	

Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
	

Paragraph	 breaking	
Purpose:	 Identifies	 paragraphs	 in	
plain	 text	
Languages:	 Any	

	

Resources	
	
1	 -‐	 ULX:	 Chunker:	 pt	
2	 -‐	 UOM:	 MLRS	 Paragraph	 breaker:	 All	
3	 –	 UPF/UNIMAN:	 IULA_tokenizer:es,ca	
4	 –	 UPF/UNIMAN:	 IULA_tagger:es,ca	
	

	
	
	
	

	

	

	
	

	

Para

Txt

1,2,3,4	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

40	

METANET4U,	 Project	 CIP	 #270893	 	 	

	
	 	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
	

Sentence	 splitting	
Purpose:	 Identifies	 individual	
sentences	 in	 plain	 text	
Languages:	 All	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 ULX:	 Chunker:	 pt	
3	 –UPF/UNIMAN:	 IULA_tokenizer:es,ca	
4	 -‐	 UNIMAN:	 GENIA	 sentence	 splitter:en	
5	 -‐	 UNIMAN:	 OpenNLP	 sentence	 detector:	
en	
6	 -‐	 UNIMAN:	 Cafetiere	 Sentence	 Splitter:	
en	
7	 -‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 UOM:	 Sentence	 Splitter:	 Any	
9	 –	 UPF/UNIMAN:	 IULA_tagger:es,ca	
10	 –	 UAIC:	 PosTagger-‐UAIC:ro	
	
	
	
	
	

	
	
	
	

	

	

	
	

	

2,3,4,5,6,7,8,9,10	

Txt

Sent

Lang
1	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

41	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	

	

	 	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
	

Tokenization	
Purpose:	 Identifies	 individual	 tokens	
in	 plain	 text	
Languages:	 Any	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
4	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:Cafetiere	 sentence	 splitter:	 en	
7-‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 ULX:	 Chunker:	 pt	
9	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
11	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
13	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
14	 -‐UPF:	 freeling_tokenizer:	 es,ca	
15	 -‐UPF:	 iula_tokenizer:	 es,ca	
16	 -‐UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,es,ca,pt,gl,eu	
17	 -‐UOM:	 MLRS	 Tokenizer:mt	
18	 -‐ULX:	 Tokenizer:pt	
19	 –	 UOM:	 MLRS	 Sentence	 Splitter:Any	
20-‐	 UOM:	 MLRS	 Tokenizer:mt	
21	 –	 UAIC:	 PosTagger-‐UAIC:ro	
	

	

	
	
	
	

	

	

Tok

Sent

Txt Lang
1	

7,13,14,15,16,20,21	

4,5,6,7,8,19	

9,10,11,17,18	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

42	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	

	

	 	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	
annotations	
	
	

Part-‐of-‐speech	 tagging	
Purpose:	 Identifies	 individual	 tokens	
in	 plain	 text	 and	 assigns	 parts-‐of-‐
speech	 to	 them	
Languages:En,	 Es,	 Ca,	 Pt,	 Gl,	 Eu,	 Ro,	
Fr,	 Mt	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:	 Cafetiere	 sentence	 spllitter:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UPF:	 iula_tokenizer:	 es,ca	
16	 -‐	 UPF:	 freeling_tokenizer:	 es,ca	
17	 -‐	 UNIMAN:	 Apertium	 Morpho	
Analyser:en,es,ca,pt,gl,eu	
19	 -‐	 ULX:	 Tokenizer:pt	
20	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
21	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
22	 -‐UPF:	 freeling_tagging:	 es,ca	
23	 -‐UPF:	 iula_tagger:	 es,ca	
24	 -‐	 UNIMAN:	 Apertium	 Tagger:	
en,es,ca,pt,gl,eu	
25	 -‐	 UOM:POS	 Tagger:mt	
26	 -‐	 ULX:	 LX-‐POSTagger:pt	
27-‐	 ULX:Chunker:pt	
28	 –	 ULX:	 LX-‐Tagger:pt	
29	 –	 UAIC:	 PosTagger-‐UAIC:ro	
	

	
	
	
	

	

	

	
	

	

Tok

Sent

Txt Lang

POS

1	

22,23,25,28,29	

8,	 9	

7,14,15,16,17	

8,9,12,19	

10,11,20,21,24,26	

3,4,	 5,	 6,	 7,	 27	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

43	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	

	

	 	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	
annotations	
Lem	 –	 Lemma	 annotations	
	
	

Lemmatization	
Purpose:	 Identifies	 individual	 tokens	 in	 plain	
text	 and	 assigns	 lemma	 information	 to	 them	
Languages:En,	 Es,	 Ca,	 Pt,	 Gl,	 Eu,	 Ro,	 Fr.	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6-‐	 UNIMAN:	 Cafetiere	 sentence	 splitter:	 en	
7-‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,es,ca,pt,gl,eu	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,fr	
19-‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
20	 -‐	 UNIMAN:morpha:en	
21	 -‐	 UPF:	 freeling_morpho:	 es,ca	
22	 -‐UNIMAN:	 Apertium	 Tagger:	 en,es,ca,pt,gl,en	
24-‐	 	 UAIC:	 Lemmatizer-‐UAIC_v1:	 ro	
	
	

	

	
	
	
	

	

	

	
	

	

Lem

Tok

Sent

Txt Lang

POS

1	

7,14,15	

8,9	

21	

10,	 22,24	

3,4,5,6,7	

8	

8,9,12,7	

10,11,16,17,22	

10,18,19,20	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

44	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	 Syntactic	 chunking	
Purpose:	 Identifies	 syntactic	 chunks	 in	 plain	
text	
Languages:En,	 Ro,	 Fr.	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:	 Cafetiere	 sentence	 splitter:	 en	
7-‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	 en	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,fr	
19	 -‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
20	 -‐	 UNIMAN:morpha:en	
21	 -‐	 RACAI:	 TTL	 Chunker:	 ro,en,fr	
22	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en	
	

	

	

	

	
	
	
	

	

	

	
	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Lem	 –	 Lemma	 annotations	
Chnk	 –	 Syntactic	 chunk	
annotations	
	

Lang

Chnk

Lem

Tok

Sent

Txt

POS

1	

21	

7,14,15	

10,22,23	

8,9,12,7	

8	

8	

10,18,19,20	

8,9	

10,11,16,17,22	

10	

3,4,5,6,7	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

45	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Syntactic	 parsing	
Purpose:	 Performs	 syntactic	 parsing	 	 on	 plain	
text	
Languages:En,	 Es,	 Ca,	 Ro	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:	 Cafetiere	 sentence	 splitter	
7-‐	 RACAI:TTL	 Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	 en	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18-‐	 UNIMAN:	 Enju	 Parser	 (HPSG):	 en	
19	 -‐	 UAIC:	 FDG-‐Parser-‐UAIC:ro	
20	 -‐	 UNIMAN:	 Stanford	 Parser:en	
21	 -‐	 UPF:	 freeling_parsed:	 es,ca	
22	 -‐	 UPF:	 freeling_dependency:	 es,ca	
24	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en	
25	 –	 UAIC:	 PosTagger-‐UAIC:ro	
	
	
	

	
	
	
	

	

	

	
	

	

Parse

Tok

Sent

Txt Lang

POS

1	

7,14,15	

8,9,12,7,25	

10,11,16,17,24,25	

20,21,22	

8,9	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Lem	 –	 Lemma	 annotations	
Parse	 –	 Syntactic	 parse	 annotations	
	

Le
m

18,20	

25	

19	

3,	 4,5,6,7,25	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

46	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	 	

NP	 chunking	
Purpose:	 Identifies	 noun	 phrase	 chunks	 in	
plain	 text	 	 	
Languages:En	 Ro,	 Fr	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:	 Cafetiere	 sentence	 splitter	
7-‐	 RACAI:TTL	 Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
13	 -‐	 RACAI:TTL	 Tokenizer:ro,en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,ro	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐UAIC:	 Splitter-‐UAIC_v2:ro	
19	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,fr	
20	 -‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
21	 -‐	 UNIMAN:morpha:en	
23	 –	 UAIC:NP-‐Chunker-‐UAIC:ro	
24	 –	 RACAI:TTL-‐Chunker:ro,en	
25	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en,ro,fr	
26	 –	 UAIC:	 PosTagger-‐UAIC:ro	
	

	
	
	
	

	

	

	
	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Lem	 –	 Lemma	 annotations	
Clause	 –	 Clause	 annotations	
FDG-‐	 FDG	 parse	 annotations	
NP	 –	 Noun	 phrase	 annotations	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

47	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Resources	
	
2	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
3	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
4-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
5	 -‐	 UNIMAN:Cafetiere	 Sentence	 Splitter:en	
6	 -‐	 RACAI:TTL-‐Tokenizer:en	
7	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
8	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
10	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
12	 -‐	 RACAI:TTL	 Tokenizer:en	
13	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
14	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	 en	
15	 -‐	 	 UNIMAN:NEMine:en	
16	 -‐	 IST:Named	 Entity	 Recognizer:	 trainable	
for	 different	 languages	
	
	
	
	

	

	

	
	

	

Named	 entity	 recognition	
Purpose:	 Identifies	 named	 entities	 within	 plain	
text.	 UNIMAN’s	 GENIA	 tagger	 and	 NEMine	
recognise	 biomedical	 named	 entities.	 IST’s	
Named	 Entity	 recognizer	 is	 trainable	 for	
different	 languages	 and	 entity	 types.	 	 	 	
Languages:En	 (biomedical),	 Others	 (using	 IST’s	
NR	 recognizer)	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
NE	 –	 Named	 Entity	 annotations	

Tok

Sent

Txt

NE

9,16	

6,	 13,14	

7,15,16	

16	

2,3,4,5,6	

6,7,8,11	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

48	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Text	 translation	
Purpose:	 Translates	 text	 from	 one	 language	 to	
another	 	 	 	
Languages	 Pairs:	 En<-‐>Es,	 Ca	 <-‐>Es,	 Es<-‐>Gl,	
Es<-‐>Pt,	 Eu-‐>Es,	 En<-‐>Gl,	 	

	

Key	

Lang	 –	 Language	 of	 text	
Src	 –	 Source	 language	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part	 of	 speech	 annotations	
Lem	 –	 Lemma	 annotations	
Mrp	 –	 Morphological	 annotations	
Tran	 –	 Translated	 morphological	
structures	
Tgt	 –	 Target	 language	 text	

Resources	
	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
13	 -‐	 RACAI:TTL	 Tokenizer:ro,en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,es,pt,gl,eu,	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,fr	
19-‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
20	 -‐	 UNIMAN:morpha:en	
21	 -‐	 UNIMAN:Apertium	 Translator:All	
language	 pairs/directions	 shown	 above	
23	 -‐	 UPC:	 N-‐II:	 En<-‐>Es,	 Es<-‐>Ca	
24	 -‐	 ULX:LXTagger	 with	 tokenization:pt	
25	 -‐	 ULX:Pos	 Tagger:pt	
26	 -‐	 ULX:Chunker:pt	
27	 -‐	 ULX:Tokenizer:pt	
28	 -‐	 UPF:freeling_tagging:es,ca	
29	 -‐	 UPF:iula_tagger:es,ca	
30-‐	 UPF:	 freeling_morpho:	 es,ca	
31	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en,es,pt,gl,eu	
	
	
	
	

	

	

	
	

	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

49	

METANET4U,	 Project	 CIP	 #270893	 	 	

5.2 Newly implemented workflows
In this section, we provide the diagrams corresponding to the 10 new
workflows that can now be implemented as a result of the UIMA
components available as part of the current deliverable. These include 4
evaluation workflows that make use of the new corpus reader
components. As in the previous section, certain features of the diagrams
indicate the current progress of the work, in terms of the number of paths
that can currently be taken through the workflows, and which languages
are supported.

The diagrams are based on those originally provided in D2.2. The features
of these diagrams are as follows:

• Resources that have already been wrapped are shown in black text.
• Resources that have not yet been wrapped as UIMA components are

shown using red text
• To show which of the planned transitions between information states

that are not currently possible at all (due to a lack of available
wrapped components), grey arrows are shown between the
information states.

• Languages that were planned for a particular workflow, but which
are not currently possible are shown in red.

• Any changes to planned components or their usage since the D2.2
are indicated using bold font. This may include extra components
that were not originally planned, or else a change in the planned
usage of the component (i.e., it appears at a different place in the
workflow).

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

50	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	 	
Txt

Sent

Eval
Key	

Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Eval	 –	 Evaluation	 results	
	

Sentence	 splitting	 evaluation	
Purpose:	 Evaluates	 sentence	 splitting	
performance	 against	 plain	 text	
Languages:	 En,	 Pt	

	

Resources	
	
1	 -‐	 ULX:	 Chunker:	 pt	
3	 -‐	 UNIMAN:	 GENIA	 sentence	 splitter:en	
4	 -‐	 UNIMAN:	 OpenNLP	 sentence	 detector:	 en	
5	 -‐	 UNIMAN:	 Cafetiere	 Sentence	 Splitter:	
en	
6	 -‐	 UOM:	 Sentence	 Splitter:	 Any	
7	 -‐	 RACAI:	 Sentence	 splitter:	 en	
8	 -‐	 UNIMAN:	 GENIA	 corpus:en	
9	 -‐	 ULX:	 CINTIL	 corpus:pt	
	
	
	
	

	
	
	
	

	

	

	
	

	

8,9	

1,3,4,5,6,7	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

51	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	

	

	

	

	 	

Key	

Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
Eval	 –	 Evaluation	 results	
	
	

Tokenization	 evaluation	
Purpose:	 Evaluates	 tokenization	
performance	 against	 gold	 standard	
corpus	
Languages:	 En,	 Pt	

	

Resources	
	
2	 -‐	 UOM:Sentence	 Splitter:Any	
3	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
4	 -‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
5	 -‐	 UNIMAN:	 Cafetiere	 Sentence	 Splitter:	 en	
7	 -‐	 ULX:	 Chunker:	 pt	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
11	 -‐	 RACAI:TTL	 Tokenizer:en	
12	 -‐	 UAIC:	 TokenizerUAIC:	 en	
13-‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	 en,pt	
14	 -‐	 ULX:	 Tokenizer:pt	
15	 -‐	 UNIMAN:	 GENIA	 corpus:en	
16-‐	 ULX:	 CINTIL	 corpus:pt	
	
	

	

	
	
	
	

	

	

	
	

	

11,	 12,	 13	

Tok

Sent

Txt

Eval

2,3,	 4,	 5,	 7	

8,9,10,11,14	

15,16	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

52	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	

	 	

Key	

Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	
annotations	
Eval	 –	 Evaluation	 results	
	
	

Tok
8,9	

8,9,12,16	

Resources	
	
2	 -‐	 UOM:Sentence	 Splitter:Any	
3	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
4	 -‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
5	 -‐	 UNIMAN:Cafetiere	 Setence	 Splitter:en	
7	 -‐	 ULX:Chunker:pt	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
13	 -‐	 RACAI:TTL	 Tokenizer:en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 en	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,pt	
16	 -‐ULX:	 Tokenizer:pt	
17	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
18	 -‐	 RACAI:TTL	 Tagger:en	
19	 -‐	 ULX:	 LX-‐POSTagger:pt	
20	 –	 ULX:LX-‐Tagger:pt	
21	 -‐	 UNIMAN:	 GENIA	 corpus:en	
22-‐	 ULX:	 CINTIL	 corpus:pt	
23	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en,pt	
	
	
	
	
	

	

	

	
	

	
Eval

Sent

POS

21,22	

20	

10,11,17,18,19,23	

13,14,15	

2,3,4,5,7	

Part-‐of-‐speech	 tagging	
evaluation	

Purpose:	 	 Evaluates	 part-‐of-‐
speech	 tagging	 performance	
against	 gold	 standard	 corpus	 	
Languages:En,	 Pt.	

	

Txt

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

53	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 UOM:Paragraph	 Breaker:Any	
3	 -‐	 UOM:Sentence	 Splitter:Any	
4	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 	 RACAI:	 Sentence	 Splitter:ro,en	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
13	 -‐	 RACAI:TTL	 Tokenizer:ro,en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 ro,	 en	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	 en	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐UAIC:	 Splitter-‐UAIC_v1:ro	
19	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,	
20-‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
21	 -‐	 UNIMAN:morpha:en	
22	 -‐	 UAIC:	 Splitter-‐UAIC:ro,en	
23	 –	 UAIC:NP-‐Chunker-‐UAIC:ro	
24	 –	 RACAI:TTL-‐Chunker:ro,en	
25	 –	 UAIC:	 RARE-‐UAIC:ro,en	
26	 –	 UAIC:	 PosTagger-‐UAIC:ro	
27	 –	 UAIC:	 DP-‐UAIC:ro,en	

	
	
	
	

	

	

	
	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Lem	 –	 Lemma	 annotations	
Seg	 –	 Segment	 annotations	
FDG-‐	 FDG	 parse	 annotations	
NP	 –	 Noun	 phrase	 annotations	
Co-‐ref	 –	 Co-‐reference	
annotations	
DP	 –	 Discourse	 Parse	 annotations	

	

Discourse	 parsing	
Purpose:	 Performs	 discourse	 parsing	 on	 plain	
text	
Languages:En,	 Ro.	

	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

54	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Resources	
	
3	 -‐	 UOM:Sentence	 Splitter:Any	
13	 -‐	 RACAI:TTL	 Tokenizer:ro,en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 ro,	 en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐	 UAIC:	 Splitter-‐UAIC_v1:en,ro	
20	 –	 UAIC:	 PosTagger-‐UAIC:ro	
21	 -‐	 UAIC:	 Splitter-‐UAIC_v2:ro	
	
	
	

	

	

	
	

	

Segmentation	
Purpose:	 Identifies	 segments	 within	 plain	 text	
Languages:En,	 Ro	

	

Seg

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Seg	 –	 Segment	 annotations	

Tok

Sent

Txt

POS

3,20	

13,14	

13,20	

17,	 20	

18	

	 21	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

55	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Resources	
	
1	 -‐	 UOM:MLRS	 Paragraph	 Breaker:Any	
2	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
3	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
4-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
5	 -‐	 UNIMAN:Cafetiere	 Sentence	 Splitter:en	
6	 -‐	 RACAI:TTL-‐Tokenizer:en	
7	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
8	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
10	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
12	 -‐	 RACAI:TTL	 Tokenizer:en	
13	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
14	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	 en	
15	 -‐	 	 UNIMAN:NEMine:en	
16	 -‐	 IST:Named	 Entity	 Recognizer:	 trainable	
for	 different	 languages	
17	 –	 UNIMAN:GENIA	 corpus	
23	 –	 UOM:Sentence	 Splitter:Any	
	
	
	
	

	

	

	
	

	

Named	 entity	 recognition	 evaluation	
Purpose:	 Identifies	 named	 entities	 within	 plain	
text.	 UNIMAN’s	 GENIA	 tagger	 and	 NEMine	
recognise	 biomedical	 named	 entities.	 IST’s	
Named	 Entity	 recognizer	 is	 trainable	 for	
different	 languages	 and	 entity	 types.	 	 	 	
Languages:En	 (biomedical),	 Others	 (using	 IST’s	
NR	 recognizer)	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
NE	 –	 Named	 Entity	 annotations	

Tok

Sent

Txt

NE

9,16	

6,	 13,14	

7,15,16	

16	

3,4,5,6,23	

6,7,8,11	

Eval

17	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

56	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Resources	
	
3	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
4-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
5	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
8	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
10	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
12	 -‐	 RACAI:TTL	 Tokenizer:en	
13	 -‐	 UAIC:	 TokenizerUAIC:en	
14	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	 en	
15	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
16	 -‐	 RACAI:TTL	 Tagger:en	
17	 -‐	 RACAI:	 TTL	 Lemmatizer:	 en	
18	 -‐	 UNIMAN:morpha:en	
19	 -‐	 UNIMAN:	 NaCTeM	 species	 word	
detector:en	 	
20	 -‐	 UNIMAN:	 ExractAbbrev:en	
21	 -‐	 UNIMAN:	 NaCTeM	 Species	
Disambiguator:en	 	
22	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en	
	
	
	
	
	
	

	

	

	
	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Lem	 –	 Lemma	 annotations	
NE	 –	 Biological	 NE	 anotations	
Spec	 –	 Species	 NE	 annotations	
Abbr	 -‐	 Abbreviation	 annotations	
NP	 –	 Noun	 phrase	 annotations	
Co-‐ref	 –	 Co-‐reference	
annotations	
Nrm	 Ent	 –	 Normalised	 species	
entity	 annotations,	 with	 NCBI	
taxonomy	 Ids	 attached	

	

Species	 disambiguation	 for	
biological	 named	 entities	

Purpose:	 Identifies	 biological	 named	 entities	
and	 disambiguates	 them	 according	 to	 species,	
by	 assigning	 a	 species	 ID	 from	 the	 NCBI	
taxonomy	
Languages:En	

	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

57	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

Key	

Txt	 –	 Plain	 text	
Sum	 –	 Summary	 of	 text	
Sp	 –	 Synthesized	 speech	
	

Summarization	 version	 1	
(with	 possible	 spoken	
output)	
Purpose:	 Produces	 a	 summary	 of	
given	 plain	 text	 (and	 possibly	 reads	 it	
out)	
Languages:	 Ro,	 En	 (only	 En	 for	
spoken	 output)	

	

Resources	
	
1	 -‐	 UAIC:	 Summarizer-‐UAIC:ro,en	
2	 -‐	 UPC:Ogmios:en	
	
	
	
	

	
	
	
	

	

	

	
	

	

1	

Sum

Txt

Sp

2	

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

58	

METANET4U,	 Project	 CIP	 #270893	 	 	

6 Upcoming work
The work to be undertaken on interoperability in the final 6 months of the
project will take two directions:

• Component/workflow implementation. In our original project plan, it
was hoped that at this point in the project, all of the originally
planned 67 workflows would be available as UIMA components
allowing all 26 workflows to be built. However, at M18, only 50
components are available as UIMA components. There are a number
of reasons why the remaining components are not yet available,
which are detailed below. In some cases, experience gained with U-
Compare has revealed that a few of the originally planned
components are not particularly suitable for inclusion in workflows.
However, there are plans to make the majority of the remaining
components available during the remaining months of the project

• Integration of components. As has been mentioned above, this work
will include the integration of the majority of the components
(where licences allow) into the core library of U-Compare. The work
will also include some upgrades to U-Compare itself, which are
either required or desirable in order to run the workflows that can
be built using the integrated components.

In the subsections below, we provide further details of these two
directions of work

6.1 Implementation of remaining workflows
In this section, we list the resources that have not yet been implemented
as UIMA components. For each resource, we provide reasons why the
implementation has not yet taken place, and state whether or not there it
is still planned to implement the resource as a UIMA component during
the remaining months of the project. These remaining resources belong to
4 different partners, i.e., UAIC, UOM, UPC and UPF.

6.1.1 UAIC	
	

In D2.2, UAIC identified 19 resources that were considered suitable to
make available as UIMA components. They made available 3 UIMA
components as part of D4.4 (including an extra resource, a second version
of their lemmatizer), and have made a further 8 UIMA components
available in the current deliverable (including 2 resources that were not

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

59	

METANET4U,	 Project	 CIP	 #270893	 	 	

originally envisaged in D2.2). According to an understanding agreed upon
by the consortium when the work on UIMA/U-Compare began, only active
resources (i.e. tools) that can be included within a workflow, or passive
resources (e.g., corpora) that can be used to evaluate the output of
workflows will be provided as U-Compare components during the lifetime
of the project. The few UAIC resources that will not be integrated do not
meet with this criterion, as detailed below:

Diacritics-UAIC

Description: Corrects Romanian diacritics in texts.
Languages covered: Romanian
Reason not implemented: Still undergoing testing
Planned implementation during final phase of project: Yes
	

SRL-UAIC

Description: Semantic role labeller
Languages covered: Romanian
Reason not implemented: Still undergoing testing
Planned implementation during final phase of project: Yes

RARE-UAIC

Description: RARE (Robust Anaphora Resolution Engine) is a system
capable of building coreference chains using morphological and syntactic
cues.
Languages covered: Romanian, English
Reason not implemented: Still undergoing testing
Planned implementation during final phase of project: Yes

TE-UAIC

Description: Textual entailment tool. The input is a pair of texts, one a
hypothesis and the other a support text. The system checks whether the
hypothesis is supported (can be extracted/inferred) by the support text.
The output is yes/no.
Languages covered: Romanian, English
Reason not implemented: Still undergoing testing
Planned implementation during final phase of project: Yes

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

60	

METANET4U,	 Project	 CIP	 #270893	 	 	

OccurrenceFinder-UAIC

Description: Finds occurrences of a word or annotation in context
Languages covered: Romanian, English
Reason not implemented: Not particularly suitable for use in text
mining workflows
Planned implementation during final phase of project: No

OntologyBuilder-UAIC

Description: Builds basic ontologies from annotated data using patterns
to identify keywords, definitions and semantic relations
Languages covered: Romanian, English
Reason not implemented: Does not fit the pattern of other
implemented tools, which add annotations to input documents; U-
Compare does not currently support the use of components that produce
new resources
Planned implementation during final phase of project: No

QA-UAIC

Description: Question-Answering component
Languages covered: Romanian, English
Reason not implemented: Does not fit the pattern of other
implemented tools, which add annotations to input documents
Planned implementation during final phase of project: No

QACorpus-UAIC

Description: Corpus of questions and answers based on the QA task at
CLEF 2011. Text passages are provided with multiple choice answers, of
which one is the correct answer. The correct answer is shown as an
attribute.
Languages covered: Romanian
Reason not implemented: Annotated corpora are only useful to
implement if they can act as gold standard data for annotations output by
particular workflows. Since QA workflows are not currently supported, a
corpus reader will not be made available for this corpus.
Planned implementation during final phase of project: No

RO-FDGBank

Description: Syntactically annotated corpus with
Languages covered: Romanian
Reason not implemented: Lack of time

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

61	

METANET4U,	 Project	 CIP	 #270893	 	 	

Planned implementation during final phase of project: Yes

RO-FN

Description: FrameNet type annotation for Romanian sentences
Languages covered: Romanian
Reason not implemented: Lack of time
Planned implementation during final phase of project: Yes

ROSemClass

Description: Corpus in which words indicating sentiment (subjectivity)
have been annotated.
Languages covered: Romanian
Reason not implemented: Currently no workflows possible for which
this corpus could act as gold standard evaluation data
Planned implementation during final phase of project: No

6.1.2 UOM	

UOM have only one planned component that is not yet available:

POS-tagged corpus

Description: Corpus with part-of-speech annotations
Languages covered: Maltese
Reason not implemented: Corpus is still under construction
Planned implementation during final phase of project: Yes

6.1.3 UPC	
	

UPC also have one resource that has not yet been delivered as a UIMA
component.

Ogmios

Description: Text-to-speech tool
Languages covered: Catalan, Spanish, English
Reason not implemented: Use of this tool in U-Compare is reliant on
enhancements to U-Compare that will allow speech files to be played
Planned implementation during final phase of project: Yes

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

62	

METANET4U,	 Project	 CIP	 #270893	 	 	

6.1.4 UPF	
	

UPF are not directly involved in the UIMA/U-Compare work. Rather, they
are involved with the PANACEA project, which is also concerned with
interoperability, using web services. In order to foster collaboration
between U-Compare and PANACEA, UNIMAN decided that it would
endeavour to make certain PANACEA services available as U-Compare
components, if their schedule allowed it (this work was not originally
envisaged in the work plan). The web services selected deal with Spanish
and Catalan, for which few other U-Compare components were planned to
be made available. A total of 8 web services were identified, of which 2
have so far been implemented as UIMA components by UNIMAN. The time
spent on these components so far has been largely been devoted to
determining how to run these web services within the UIMA framework.
This initial implementation work should make it more straightforward to
implement the remaining 6 services as U-Compare components during the
final phase of the project.

iula_preprocess

Description: Text preprocessing. Carries out: (i) text segmentation into
minor structural units (titles, paragraphs, sentences, etc.); (ii) detection
of entities not found in dictionaries (numbers, abbreviations, URLs, emails,
proper nouns, etc.); and (iii) the keeping of sequences of two or more
words in a single block (dates, phrases, proper nouns, etc.).
Languages covered: Spanish, Catalan
Reason not implemented: Time has been spent working out the
framework for running these the UPF web services in UIMA/U-Compare;
implementation should be straightforward.
Planned implementation during final phase of project: Yes

freeling_tokenizer

Description: Text tokenizer
Languages covered: Spanish, Catalan
Reason not implemented: Time has been spent working out the
framework for running these the UPF web services in UIMA/U-Compare;
implementation should be straightforward.
Planned implementation during final phase of project: Yes

freeling_morpho

Description: Morphological analyser
Languages covered: Spanish, Catalan

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

63	

METANET4U,	 Project	 CIP	 #270893	 	 	

Reason not implemented: Time has been spent working out the
framework for running these the UPF web services in UIMA/U-Compare;
implementation should be straightforward.
Planned implementation during final phase of project: Yes

freeling_tagging

Description: Part-of-speech tagger
Languages covered: Spanish, Catalan
Reason not implemented: Time has been spent working out the
framework for running these the UPF web services in UIMA/U-Compare;
implementation should be straightforward.
Planned implementation during final phase of project: Yes

freeling_parsed

Description: Shallow parser
Languages covered: Spanish, Catalan
Reason not implemented: Time has been spent working out the
framework for running these the UPF web services in UIMA/U-Compare;
implementation should be straightforward.
Planned implementation during final phase of project: Yes

freeling_dependency

Description: Dependency parser
Languages covered: Spanish, Catalan
Reason not implemented: Time has been spent working out the
framework for running these the UPF web services in UIMA/U-Compare;
implementation should be straightforward.
Planned implementation during final phase of project: Yes

6.2 Integration of UIMA components into U-Compare
As mentioned above, there are two main parts to the integration work.
Firstly, where their licences permit, most components will be integrated
into U-Compare’s core library. This will mean that the majority of the
METANET4U resources that have been made available as UIMA
components will be immediately available for use after U-Compare has
been downloaded, so that workflows for a number of different languages
can created with the minimum of effort.

The second part of the integration work will include enhancements to U-
Compare itself. These enhancements will allow some new types of
workflows that can be built using the new UIMA components to be more

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

64	

METANET4U,	 Project	 CIP	 #270893	 	 	

fully supported by U-Compare, in that there will be more complete
facilities to visualise their outputs. These enhancements, which were first
suggested in D4.4, can be summarised as follows:

• As has been mentioned above, two types of components that have
been created during METANET4U make use of a new “view” of the
text (i.e., a second sofa) to store their output. These are the
components that carry out machine translation (in which the second
sofa is used to store the target language text) and summarisation
(in which the second sofa is used to store the summary of the text).
U-Compare’s annotation viewer does not currently support the
visualisation of different sofas. Hence, UNIMAN plans to implement a
new annotation viewer, which can display multiple views of a
document side by side.

• U-Compare can currently only handle the construction of workflows
that process one document at time and then move on to the
processing of the next document. That is to say, the annotations in
the UIMA CAS are cleared after the processing of each document is
complete. Whilst this model of execution is suitable for many
simpler types of processing, it cannot support certain more complex
components and workflows. As an example, UAIC’s automatic
summarisation tool, which is currently wrapped a UIMA component
that generates summaries of individual documents, can also
generate a single summary of multiple documents. Within the UIMA
framework, this latter type of behaviour would require information
from CASes produced for individual documents to be merged
together, in order to allow a summary for the complete document
set to be created. The UIMA framework itself can support such
behaviour, through the provision of provides CAS multipliers and
CAS mergers, but these are not currently handled in U-Compare.
UNIMAN will look into the feasibility of handling CAS
multipliers/mergers within U-Compare, in order to allow more
complex workflows to be created.

• In order to be able to experiment in U-Compare with workflows that
produce speech based output, a new annotation “viewer”
component will have to be implemented that is able to play speech-
based annotations.

7 References
Ananiadou, S., Thompson, P., Kano, Y., McNaught, J., Attwood, T. K.,
Day, P. J. R., Keane, J., Jackson, D. and Pettifer, S.. (2011). Towards
Interoperability of European Language Resources. Ariadne, 67.

Deliverable	 D4.6:	 Second	 version	 of	 pilot	 applications	

65	

METANET4U,	 Project	 CIP	 #270893	 	 	

Thompson, P., Kano, Y., McNaught, J., Pettifer, S., Attwood, T. K., Keane,
J. and Ananiadou, S.. (2011). Promoting Interoperability of Resources in
META-SHARE. In: Proceedings of the IJCNLP Workshop on Language
Resources, Technology and Services in the Sharing Paradigm (LRTS), pp.
50-58.

Ferrucci, D., Lally, A., Gruhl, D., Epstein, E., Schor, M., Murdock, J. W.
(2006). "Towards an Interoperability Standard for Text and Multi-Modal
Analytics". IBM Research Report RC24122.

Kano, Y., Miwa, M., Cohen, K. B., Hunter, L. E., Ananiadou, S., & Tsujii, J.
(2011). "U-Compare: A modular NLP workflow construction and evaluation
system". IBM Journal of Research and Development, 55(3), 11:11-11:10.

Kano, Y., Baumgartner, W. A., Jr., McCrohon, L., Ananiadou, S., Cohen, K.
B., Hunter, L. (2009). "U-Compare: share and compare text mining tools
with UIMA". Bioinformatics, vol. 25, no. 15, 1997-1998.

	

