
	

	

	

	

	

	

First Version of Pilot
Applications
	 Deliverable D4.4

Version 1.0

2012-02-01

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

2	

METANET4U,	 Project	 CIP	 #270893	 	 	

METANET4U	
www.metanet4u.eu

The central objective of the Metanet4u project is to contribute to the establishment of a pan-
European digital platform that makes available language resources and services, encompassing
both datasets and software tools, for speech and language processing, and supports a new
generation of exchange facilities for them.
This central objective is articulated in terms of the following main goals:
Assessment: to collect, organize and disseminate information that permits an updated insight into
the current status and the potential of language related activities, for each of the national and/or
language communities represented in the project. This includes organizing and providing a
description of: language usage and its economic dimensions; language technologies and resources,
products and services; main actors in different areas, including research, industry, government and
society in general; public policies and programs; prevailing standards and practices; current level
of development, main drivers and roadblocks; etc.
Collection: to assemble and prepare language resources for distribution. This includes collecting
languages resources; documenting these language resources; upgrading them to agreed standards
and guidelines; linking and cross-lingual aligning them where appropriate.
Distribution: to distribute the assembled language resources through exchange facilities that can
be used by language researchers, developers and professionals. This includes collaboration with
other projects and, where useful, with other relevant multi-national forums or activities. It also
includes helping to build and operate broad inter-connected repositories and exchange facilities.
Dissemination: to mobilize national and regional actors, public bodies and funding agencies by
raising awareness with respect to the activities and results of the project, in particular, and of the
whole area of language resources and technology, in general.

METANET4U is a project in the META-NET Network of Excellence, a cluster of projects aiming at
fostering the mission of META. META is the Multilingual Europe Technology Alliance, dedicated to
building the technological foundations of a multilingual European information society.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

3	

METANET4U,	 Project	 CIP	 #270893	 	 	

METANET4U is co-funded by the participating institutions and the ICT Policy Support Programme of
the European Commission

and by the participating institutions:

Faculty of Sciences, University of Lisbon

Instituto Superior Técnico

University of Manchester

University Alexandru Ioan Cuza

Research Institute for Artificial Intelligence,
Romanian Academy

University of Malta

Technical University of Catalonia

Universitat Pompeu Fabra

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

4	

METANET4U,	 Project	 CIP	 #270893	 	 	

Revision History

Version Date Author Organisation Description

0.6 10th Jan 2012 Sophia Ananiadou
et al.

UNIMAN First skeleton outline

0.7 13th Jan 2012 Sophia Ananiadou
et al.

UNIMAN Introductory sections
completed

0.8 18th Jan 2012 Sophia Ananiadou
et al.

UNIMAN Descriptions of
resources and
workflow diagrams
completed

0.9 22nd January
2012

Sophia Ananiadou
et al.

UNIMAN Prefinal version sent to
reviewers

1.0 31st January 2012 Sophia Ananiadou
et al.

 Final version

	

Statement of originality:

This deliverable contains original unpublished work except where clearly indicated
otherwise. Acknowledgement of previously published material and of the work of
others has been made through appropriate citation, quotation or both.	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

5	

METANET4U,	 Project	 CIP	 #270893	 	 	

METANET4U	

First version of pilot
applications

Document METANET4U-2012-D4.4
EC CIP project #270893

Deliverable D4.4
Completion: Final
Status: Submitted

Dissemination level: Restricted to other programme participants

Responsible: Sophia Ananiadou (WPS coordinator)

Contributing Partners: UNIMAN, UPF, FCUL, CLUL, IST, UAIC, RACAI,
UOM, UPC

Authors: Sophia Ananiadou, Paul Thompson, John McNaught, Jorge
Vivaldi, Núria Bel, João Balsa, Rita Henriques, João Silva, Sérgio Castro,
Thomas Pellegrini, Isabel Trancoso, Ionut Pistol, Radu Ion, Dan Tufis,

Andrew Attard, Jan Joachimsen, Mike Rosner, Antonio Bonafonte,
Asunción Moreno 	

Reviewers: Mike Rosner, Andrew Attard

© all rights reserved by FCUL on behalf of METANET4U

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

6	

METANET4U,	 Project	 CIP	 #270893	 	 	

Contents

1	 Introduction	 ...	 8	
2	 Creation	 of	 UIMA	 components	 ...	 10	
3	 U-‐Compare	 ..	 11	
3.1	 Constructing	 workflows	 ...	 11	
3.2	 Executing	 workflows	 and	 viewing	 results	 ..	 13	
3.3	 U-‐Compare	 type	 system	 ..	 14	

4	 Work	 on	 UIMA	 components	 and	 U-‐Compare	 workflows	 in	 METANET4U	 	 15	
5	 Resources	 wrapped	 as	 UIMA	 components	 ..	 17	
5.1	 University	 of	 Lisbon	 (ULX)	 ..	 20	
Tools	 ..	 20	

5.2	 IST	 –	 Instituto	 Superior	 Técnico	 ...	 22	
5.3	 University	 of	 Manchester	 –	 UNIMAN	 ..	 22	
Tools	 ..	 22	

5.4	 University	 Alexandru	 Ioan	 Cuza	 (UAIC)	 ..	 31	
Tools	 ..	 31	

5.5	 RACAI	 –	 Romanian	 Academy	 ..	 32	
Tools	 ..	 32	

5.6	 University	 of	 Malta	 (UOM)	 ...	 35	
Tools	 ..	 35	

5.7	 UPC	 -‐	 Universitat	 Politècnica	 de	 Catalunya	 ..	 37	
Tools	 ..	 37	

5.8	 UPF-‐	 Universitat	 Pompeu	 Fabra	 ..	 38	
6	 Workflows	 ...	 38	

Paragraph	 breaking	 ...	 40	
Sentence	 splitting	 ...	 41	
Tokenization	 ..	 42	
Part-‐of-‐speech	 tagging	 ...	 43	
Lemmatization	 ..	 44	
Syntactic	 chunking	 ...	 45	
Syntactic	 parsing	 ..	 46	
NP	 chunking	 ...	 47	
Named	 entity	 recognition	 ...	 48	
Text	 translation	 ...	 49	

7	 Upcoming	 work	 ...	 52	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

7	

METANET4U,	 Project	 CIP	 #270893	 	 	

8	 References	 ...	 53	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

8	

METANET4U,	 Project	 CIP	 #270893	 	 	

1 Introduction
META-SHARE is the infrastructure that will be used to make available the
language resources (LRs) being released as part of METANET4U (and
related projects). Developers of third-party LRs are also being encouraged
to make their LRs accessible via META-SHARE, thus making it a useful
facility for all types of LR developers and users.

Developers often combine together more basic LRs in order to develop
more complex tools or applications for natural language processing (NLP).
For example, the processes of sentence splitting, tokenization and part-of-
speech (POS) tagging must normally all be carried out prior to running a
syntactic parser. Syntactic parse results may then be used to carry out
more complex tasks, e.g., relation or event extraction, semantic search,
etc.

New types of applications can be built more easily if tools that carry out
basic processes (sentence splitting, tokenization, etc.) can be reused.
Accordingly, large numbers of LRs that perform such processes will be
made available on META-SHARE. Although making a library of such LRs
readily available from a single point of access is certainly beneficial for
developers, it does not necessarily follow that the resources can be reused
easily. For example, different LRs can be implemented in different
programming languages, have different output formats, or use different
data types. This means that, potentially, a large amount of work may be
required in order to integrate a set of disparate LRs into a complex
application.

As a consequence of these integration problems, new applications that are
built may have sub-optimal performance. Often, a particular application
can be built using various combinations of component tools. For example,
for any given language, there may be a range of tokenizers, POS taggers,
etc. Combining different tools in different ways may result in different
levels of overall performance of the complete application. However, if a
large amount of extra code must be written to facilitate the integration of
each possible tool, then performing experiments using different
combinations of tools may simply not be an option.

One of the major goals of META-SHARE is to overcome such potential
problems of resource reusability, by promoting the use of widely
acceptable standards for language resource building, in order to ensure
the maximum possible interoperability of language resources (LR).
Interoperability between LRs can be achieved in a number of ways. In
METANET4U, one of the goals of the project is to demonstrate explicitly
the advantages that can be brought to NLP application building by making
resources interoperable.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

9	

METANET4U,	 Project	 CIP	 #270893	 	 	

Our work is focussed on the use of the Unstructured Information
Management Architecture (UIMA) framework and the associated U-
Compare platform. The former constitutes a framework by which LRs can
be made into interoperable components, whilst latter provides a graphical
user interface which allows interoperable UIMA components to be
combined together into workflows using simple drag-and-drop actions,
with no coding effort required. Thus, by making LRs available as UIMA
components, and using them within U-Compare, it is possible to build and
experiment with prototype applications, using various combinations of
LRs, in a rapid and straightforward manner. Once components have been
made available as UIMA components, the use of U-Compare allows
prototype applications to be built without writing any additional program
code. This means that experimentation can be carried out not only by
experienced system developers, but also by less technical users, whose
programming skills may be limited.

A certain amount of effort is required to convert existing LRs into
interoperable UIMA components, requiring some extra program code to be
written. As part of the METANET4U project, we are working on writing
such code, in order to make a range of our LRs available as UIMA
components. These components will include both monolingual LRs
operating on various different languages, as well as multi-lingual and
speech-based LRs. Using U-Compare, we are then combining the UIMA
components in various ways into a set of “pilot” applications or workflows,
which can be used to carry out various different NLP tasks, often in a
number of different languages. The purpose of this work is to showcase
the power of UIMA and U-Compare to allow workflows to be constructed
rapidly. This will provide evidence that a more wide-scale adoption in
META-SHARE could be advantageous.

In this Deliverable 4.4 First Version of Pilot Applications, we describe the
first phase of the implementation of the work described above, which
consists of a first set of UIMA components, together with a sample set of
working workflows that make use of these components. The work follows
on from a planning and design phase, which was documented in
Deliverable D2.2 Specification of pilot services and applications. In D2.2,
we determined a set of LRs that were deemed suitable to be made
available as UIMA components for use in NLP workflows. We also designed
a set of possible workflows that could be built using various combinations
of these UIMA components.

At this point, it should be noted that, although the work being carried out
on interoperability in METANET4U is concerned only with UIMA /U-
Compare, the partner UPF is involved with the PANACEA project1, which
also places a great emphasis on interoperability. The main objective of
PANACEA is to build a factory of language resources that automates the
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 http://www.panacea-‐lr.eu/	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

10	

METANET4U,	 Project	 CIP	 #270893	 	 	

stages involved in the acquisition, production, updating and maintenance
of language resources required by MT systems and other applications
based on language technologies. Such automation is achieved through the
implementation of a number of workflows, based on web services. Thus,
in order to demonstrate that interoperability can be achieved in different
ways, PANACEA as well as UIMA/U-Compare workflows will be made
available in META-SHARE. More details about PANACEA, together with
sample workflows, were provided in Deliverable D2.2 Specification of pilot
services and applications.

The remainder of this deliverable is organised as follows. In section 2,
very brief information is provided about UIMA components (more detailed
information was provided in D2.2). In section 3, relevant details about U-
Compare are provided, which build upon the information that was
provided in D2.2, providing greater detail regarding the construction of
workflows, the display of results, and the U-Compare type system, which
helps to further facilitate interoperability of components. These details
help to put into context the work reported in the remainder of this
deliverable. In section 4, we examine the overall plan of work on UIMA/U-
Compare in the METANET4U project, providing greater detail about what
has been achieved so far, and what has yet to be completed in the
remainder of the project. In section 5, we provide details regarding the
LRs that the different partners of the project have already made available
as UIMA components. In section 6, we illustrate the workflows that can be
constructed using the UIMA components described in section 5. Finally, in
section 7, we look ahead to the second phase of the workflow
implementation.

2 Creation of UIMA components
The UIMA framework (Ferrucci, et al., 2006) provides a means to make
LRs interoperable. Interoperability is achieved by imposing a standard
means of communication between the LRs, thus facilitating their easy
combination into workflows. For pre-existing LRs, this normally entails the
production of some “wrapper” code, whose purpose is to ensure that the
LR obtains its input and produces output according to the requirements
imposed by UIMA. At the heart of the UIMA framework is a common data
structure called the Common Analysis System (CAS), which can be
accessed by all resources at the workflow. Each UIMA component must
obtain its input by reading annotations (which may correspond to
paragraphs, sentences, tokens, etc.) from the CAS. Output from
components is stored by writing new annotations to the CAS, or else
updating existing annotations. Thus, the main purposes of the wrapper
code are as follows:

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

11	

METANET4U,	 Project	 CIP	 #270893	 	 	

a) To obtain from the CAS the information required as input to the LR,
and to convert this information into the format required to run the
LR.

b) To convert the output of the LR to CAS annotations, and to write
these to the CAS.

Once wrapped as UIMA components, the original programming language
and input/output formats of the LRs become irrelevant.

In addition to the wrapper code, each UIMA component must be
accompanied by an XML file called a Descriptor. The descriptor file
includes details such as the name of the component, a brief description of
the functionality, details of the input/output annotations, parameters that
are required in the configuration of the component (such as the location of
external files), etc.

3 U-Compare
U-Compare (Kano et al., 2009; Kano et al., 2011) is built on top of UIMA,
and its main aim is to support the rapid and flexible construction of
language technology (LT) applications from reusable resources, and to
allow easy evaluation of such applications against gold-standard
annotated data.

3.1 Constructing workflows
U-Compare’s graphical user interface makes it easy for users to construct
LT applications using simple drag-and-drop actions. To create a workflow,
resources are dragged from a library of available components onto a
workflow “canvas”, in the required order of execution. Once a complete
workflow has been specified, it can be run at the click of a button.

The main U-Compare interface window is shown in Figure 1. On the right
hand side of the interface is a library of LRs that are available as UIMA
components. On the left of the interface is the workflow canvas. To create
workflows, the user drags components from the library onto the workflow
canvas.

The workflow canvas consists of two sections. At the top is the Collection
Reader section. The user should drag into this section a component that
reads in texts that will be analysed by subsequent components in the
workflow. In the example in Figure 1, an Input Text Reader has been
dragged into this section. This allows the user to type or paste text
directly into a text box. Another type of collection readers reads a
directory of from the user’s file system and processes each file in the
directory according to the workflow specification.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

12	

METANET4U,	 Project	 CIP	 #270893	 	 	

Figure 1: U-Compare interface

The second section of the canvas is the Analysis Engines and Cas
Consumers section. Into this section, users should drag components that
carry out the processing of the text(s) that have been read by the
collection reader. In Figure 1, we see that 2 components have been
dragged onto this section of the canvas, i.e., a sentence splitter and a
tokenizer. These tools will be run on the input text in the order that they
appear on the canvas. Each component in this section will generally add
new annotations to the CAS. It can be noted that the graphical
representation of each component in the workflow shows the types of
annotations that are required as input (i.e., those types of annotations
that must be present in the CAS in order for the component to run) and
those annotations types that are produced as output (i.e., they are added
to the CAS following the execution of the component). These input and
output types (as well as other details in the graphical representation of
the component) are generated from the component’s XML descriptor file.

In the case of the MLRS Sentence Splitter, the Inputs field of its
description is blank, meaning that an unannotated text is accepted as
input. In the Outputs field, one type of annotation is specified, i.e.,
Sentence. For the OpenNLP Tokenizer component, Sentence annotations
are required as input and Token annotations are output to the CAS. In

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

13	

METANET4U,	 Project	 CIP	 #270893	 	 	

order to build a workflow, it must be ensured that any annotation types
that are required as input to a particular component in the workflow are
already in the CAS at the time of its execution. The Inputs and Outputs
fields in the graphical representations of the components in U-Compare
make it easy to ensure that such requirements are met. For example, in
the workflow in Figure 1, the fact that the MLRS Sentence Splitter is
executed prior to the OpenNLP Tokenizer in the workflow means that the
Sentence annotations required by the tokenizer will already be present in
the CAS.

A final point to note about the interface in Figure 1 is the fact that clicking
over a component in the library on the right hand side of the interface
causes the specification of the component (including its input and output
annotation types) to be displayed at the bottom of the right hand pane. In
this way, users can check the specification of individual components
before adding them to the workflow. Once built, workflows can be saved
for later use, by selecting an item in the Workflow menu at the top of the
window. This is particularly useful when a workflow is complex, and
consists of a large number of different processing steps.

3.2 Executing workflows and viewing results
Clicking on the button with the “Play” icon at the bottom of the left hand
side of the window shown in Figure 1 causes the workflow to be executed,
by reading each of the texts read specified in the Collection Reader
component, and applying to these texts the tools specified in the Analysis
Engines and Cas Consumers section. After all processing is complete, a
new window appears that allows the annotations added during the
workflow to be viewed. The results obtained from the workflow built in
Figure 1 are shown in Figure 2.

Figure 2: U-Compare annotation viewer

The analysed text is shown on the left-hand side of the window. In the
middle of the window, the different types of annotations added during the
execution of the workflow are shown. Each type of annotation is shown

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

14	

METANET4U,	 Project	 CIP	 #270893	 	 	

using different coloured underlines in the text. Each annotation type has a
checkbox next to it, which allows its associated annotations to be
“switched” on or off in the view of the text. This feature can be especially
useful when a workflow adds many types of annotations to a text, in order
to be able to concentrate on specific types of annotations. In Figure 2,
only Token annotations are displayed. On the right hand side of the
window, the features of the annotations are shown in a tabular format. In
the case of Token annotations, only the covered text, and the beginning
and end offsets of the annotations are shown. Other types of annotations
will have further attributes, e.g., the POS tag assigned in the case that a
POS tagger has also been run. In addition to the annotations themselves,
additional details are available regarding the performance of workflows,
such as the amount of time taken to execute the components. The speed
of execution time can also be an important consideration; the choice of an
optimal workflow may involve a trade-off between the quality of the
annotations and the time taken to complete the workflow.

U-Compare also provides special facilities that allow the performance of
workflows to be evaluated against gold standard data. Given that a
number of tools are often available for similar purposes, U-Compare
makes it possible to apply several different workflows to a corpus in
parallel, and to compare which workflow produces the best results against
a gold standard corpus. Such gold standard corpora can be made available
as a special type of collection reader component, and indeed, a number of
such corpora are planned to be made available in the second release of
UIMA components, at M18. Therefore, these features of U-Compare will be
described more fully in Deliverable D4.6 Second version of pilot
applications, due at M18.

3.3 U-Compare type system
Another resource that comes packaged with U-Compare is the U-Compare
type system. As described above, all annotations that are added to the
UIMA CAS have types, e.g., Sentence, Token, etc., and, in order to
connect components together into workflows, they must “understand” the
types of annotations produced by other components in a workflow. Since
UIMA itself does not define a set or system of types, UIMA components
produced by different developers may use their own system of annotation
types, which can cause problems of interoperability for UIMA components
developed by different groups. Whilst achieving consensus on a common
type system suitable for encoding the inputs/outputs of all possible LRs
would be problematic, U-Compare defines a “sharable” system of types,
that includes syntactic, semantic and document-level annotation types
that are commonly produced by NLP applications. The idea is that all
components available in U-Compare should produce annotations that are
compatible with this type system. The U-Compare type system consists of
fairly general types, which may be specialised if necessary using subtypes.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

15	

METANET4U,	 Project	 CIP	 #270893	 	 	

By ensuring that as many UIMA-wrapped LRs as possible comply with the
U-Compare type system, it can be ensured that compatibility between
many LRs developed by different groups can be achieved, at least at an
intermediate level of the type hierarchy.

The utility of U-Compare and its type system have already been
demonstrated through its existing library of over 50 components (some of
which are described below, as those that will also be made available in
META-SHARE), each of which is compatible with the U-Compare type
system. This existing library is mainly focussed on the processing of
biomedical texts in English.

In order to ensure the interoperability of the new UIMA components being
created during METANET4U, the annotation types that they will use to
encode their inputs and outputs will comply with the U-Compare type
system as much as possible. As reported in D2.2, part of our initial
analysis of the input and output of the LRs that we selected showed that
the existing types appeared to be largely sufficient for the new
components. However, where necessary, the type system will be
expanded to accommodate data types that were not dealt with by the
original system, such as speech based input/output. Our goal is to
produce a type system that can be employed regardless of LR language or
type.

4 Work on UIMA components and U-Compare workflows
in METANET4U

In order to put into context the work described in this deliverable, we
provide in this section a brief overview of the plan of work regarding the
development of UIMA components and U-Compare workflows, including
details of what has already been completed, and what is yet to be done.
The main tasks to be carried out on this work during the lifetime of the
project consist of the following:

1) Identifying a set of LRs to wrap as UIMA components. These
mainly consist of a subset of the LRs (both tools and corpora) which
each partner agreed to upgrade and make available on META-SHARE,
as specified in D2.1 Report on first selection of resources. To these
were added some additional resources, in order to better demonstrate
the potential for multi-lingual and speech-based applications within U-
Compare.

2) Designing a set of workflows that make use of the UIMA-
wrapped components. The wrapped components can be combined
flexibly into workflows. In order to showcase this flexibility and
versatility, a number of specific workflows that make use of the
wrapped components have been designed. These workflows have the
following purposes:

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

16	

METANET4U,	 Project	 CIP	 #270893	 	 	

a. They demonstrate that different components can be combined
and reused to carry out several different tasks.

b. They demonstrate that components developed by different
partners and using different implementation methods can be
combined seamlessly into workflows.

c. Many of the workflows constitute multi-stage processes that are
fundamental to many NLP applications (e.g. POS tagging,
parsing, named entity recognition) and thus form building blocks
that can be reused, extended and adapted in the creation of
several different applications.

3) Wrapping of the UIMA components. This constitutes the first stage
in the implementation of the workflows. Code has to be written to
ensure that input/output of the selected LRs is handled in the way
required by UIMA. This stage has been partially completed. This stage
also identifies whether the existing U-Compare type system can handle
the input/output types of the components, or whether any expansions
to the type system are required. The type system should remain
reasonably compact, but yet be able to handle a wide range of different
LRs. Since the majority of project partners had not worked with UIMA
and U-Compare before, the first phase of the implementation phase
was devoted to learning how to carry out the wrapping process, and
how to test the wrapped components in U-Compare. In order to
facilitate the learning process, UNIMAN produced a short tutorial
document, which also provided links to relevant information in the
UIMA online documentation. UNIMAN has also supported partners in
the creation of their own UIMA components. A one day
meeting/workshop was also held in Manchester a few weeks before the
delivery of this first set of UIMA components and workflows, in order to
consolidate the work carried out in the first few months of the
implementation phase, and to provide support to partners with any
outstanding implementation issues.

4) Implementation of the workflows. Step 2) provides a guide as to
how the various wrapped UIMA components can be combined together
into workflows to carry out a number of useful NLP tasks. In most
cases, a particular task can be achieved in a large number of ways by
using the available LRs in different combinations. As explained above,
experimentation with different versions of workflows can be undertaken
easily by building them using U-Compare’s workflow canvas. However,
we are also making available a number of sample “implemented”
workflows, one for each language and task. These take the form of
special files containing read-made workflows that can be imported into
U-Compare and used immediately. Such workflows can act as
“templates” for carrying out a particular task, that can be modified
(e.g., by substituting alternative components) and extended as
required.

5) Integration into the digital exchange platform. Both components
and workflows will be made available for download on META-SHARE,

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

17	

METANET4U,	 Project	 CIP	 #270893	 	 	

allowing them to be imported into U-Compare by users of the platform.
It is also planned to integrate many of the components into the “core”
U-Compare library at a later stage in the project, so that a range of
different components operating in a range of languages is readily
available to users. Certain components may still have to be imported
separately into U-Compare, according to the compatibility of the terms
of their licences with those of U-Compare.

Of the steps outlined above, 1) and 2) were carried out during a planning
phase that was undertaken between M2 and M5 of the project. The results
of this planning phase are described in detail in D2.2 Specification of pilot
services and applications. As a brief summary, the planning phase
resulted in the identification of a total of 67 resources that would be made
available as UIMA components, together with 26 different workflows that
would make use of these components.

Steps 3) and 4) constitute the main implementation phase of the project.
The wrapped UIMA components and associated workflows are being
delivered in 2 stages, the first at M12, and the second at M18. The work
required for step 5) will be carried out between M19 and M24.

This Deliverable 4.4 First Version of Pilot Applications accompanies the
first release of components and workflows, which mainly constitute more
basic levels of text processing. Following the first phase of
implementation, there are 32 UIMA-wrapped components (including a
number that had previously been wrapped by UNIMAN). The components
can handle 8 different languages. In terms of workflows, a total of 10
have been (partially) implemented, of which 7 can operate on multiple
languages. By “partially”, we mean that some of the workflows can
currently operate only on a subset of the planned languages, or else they
can only be created using a subset of the possible planned variations.

5 Resources wrapped as UIMA components
In this section, we provide details of the 31 resources that are included in
the first release of wrapped UIMA components that accompanies this
report, of which 15 have been newly wrapped during this first phase of the
implementation period (the remainder being resources already wrapped
as part of the main U-Compare release). In general, partners have begun
by wrapping their simplest components. The motivations for this are two-
fold. Firstly, simpler resources are generally easier to wrap as UIMA
components than more complex resources and, as explained above, at the
beginning of the project, partners generally had no previous experience of
carrying out these wrapping activities. Secondly, it means that a set of
“core” workflows can already be built at the end of this first phase of
implementation, which will form the basis of many of the more complex

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

18	

METANET4U,	 Project	 CIP	 #270893	 	 	

workflows that will be implemented during the second phase, between
M13 and M18.

As mentioned above, U-Compare comes packaged together with a library
of components, which include amongst them some of UNIMAN’s
components that are described below. LRs that have been newly wrapped
during this first implementation phase are currently provided in the form
of Java Archive (jar) files, containing the program code and the descriptor
file. Using jar files, new components can easily be imported and tested in
U-Compare, allowing us to demonstrate their interoperability. The process
of adding new components packaged as jar files to the U-Compare library
is illustrated in Figure 3.

Figure 3: Adding new components to the U-Compare library

Choosing a menu item on the U-Compare interface causes a window with
a list of jar files containing currently imported components to be
displayed, as shown in the centre of Figure 3. New jar files can be added

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

19	

METANET4U,	 Project	 CIP	 #270893	 	 	

to this list by clicking on the “Add Jar File(s) to classpath” button. New
components are added to the library by checking the boxes next to the
appropriate jar files and then clicking on the button labelled “Search for
Component Descriptors” is clicked. This causes descriptor file(s) in the
selected jar files to be found. The search results are displayed in a
separate window, with the option to add the components associated with
the checked descriptors to the U-Compare library. Clicking on the “Add
Selected Components” button causes the new components to appear in
the component library pane, under the “Custom Components”. Once
added, components can be moved from this section to other categories in
the library, to make them easier to locate.

In the remainder of this section, we provide details of the 32 resources
that are currently wrapped as UIMA components. The resources are
grouped according to the contributing partner, and the following details
are provided:

• Brief description of the resource
• Languages handled/covered by the resource
• Input/output data types of the resource
• Corresponding U-Compare types used for input/output in the

wrapped component. In the case that one or more of the types is an
extension (subtype) of a type in the core U-Compare type system,
this is indicated.

• Details about the U-Compare types used. These details include, e.g.,
whether the original type system was sufficient without
modifications, whether the types used in the implemented
component are different from those envisaged in D2.2, which new
subtypes were created, and why, etc.

• Any relevant details or issues regarding the implementation of the
wrapper code.

The majority of the components listed for UNIMAN are already part of
U-Compare, with the exception of two newly wrapped components
(i.e., the Apertium morphological analyser and the Apertium tagger).
These newly wrapped resources, together with all other resources that
have been newly wrapped by other partners, have been uploaded onto
the METANET4U intranet, at the following location:

http://metanet4u.eu/intranet/index.php/WPS_-
Webservices%28coord:_Sophia%29#Currently_wrapped_component
s

The list of components will be augmented with further new components
during the second phase of the implementation period.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

20	

METANET4U,	 Project	 CIP	 #270893	 	 	

5.1 University of Lisbon (ULX)
	

Tools	
	

LX-Chunker

Description: Portuguese sentence and paragraph boundary detector. It
unwraps sentences split over different lines.
Languages covered: Portuguese
Original resource implementation: Web service
Input: Plain text
U-Compare input type: N/A
Output: Paragraphs, Sentences
U-Compare output type:
org.u_compare.shared.document.text.Paragraph,
org.u_compare.shared.syntactic.Sentence
U-Compare type details: These are the originally planned output types.
The existing U-compare types are sufficient for the output of this tool,
without any need for extension.
Implementation details/issues: The tool is implemented as a web
service, LXService. In order to implement the U-Compare component, the
web service is invoked through a package, available as lxServiceClient.jar,
which must be placed on the U-Compare claspath. Its constructor requires
one parameter related to the authentication of the client, namely the
client’s username, as this is registered at the LXService database of
clients. We have created a new user in this database for U-Compare. The
output of the call to web service is then converted to the format required
by U-Compare.
NOTE: Whilst this component is correcly wrapped, and works perfectly
when U-Compare is started from within the Eclipse programming
environment (which partners have been encouraged to use to develop
their code), it currently does not work when U-Compare is started
independently of Eclipse. It has been discovered that this is due to bug in
U-Compare concerning the reading of lxServiceClient.jar, which is not
trivial to rectify. Thus, for the time being, we have not included this
component in any importable workflows. However, we still include the
component as part of this release, as it is a fully functional UIMA
component, and its functionality can be tested by starting U-Compare
from within Eclipse. The U-Compare bug will be fixed as soon as possible
during the second phase of the implementation.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

21	

METANET4U,	 Project	 CIP	 #270893	 	 	

LX-Tokenizer

Description: Splits sentences into tokens. In addition, it expands
contractions, marks spacing around punctuation or symbols, detaches
clitic pronouns verbs, and handles ambiguous strings.
Languages covered: Portuguese
Original resource implementation: Web service
Input: Sentences
U-Compare input type: org.u_compare.shared.syntactic.Sentence
Output: Tokens, with additional information as described above
U-Compare output type:
org.u_compare.shared.syntactic.Token
U-Compare type details: These are the originally planned input and
output types. However, the information output by the current UIMA
wrapped component does not include all of the information output by the
original tool, which outputs richer information than only basic tokens.
Some examples of this extended functionality include expanding
contractions and detaching clitic pronouns from verbs. Such information
would have to be stored as additional attributes of the token, but
org.u_compare.shared.syntactic.Token does not have provision for
storing such extra information. However, it is planned, during the second
phase of the implementation, to make changes to this component. The
specific plan is to extend the org.u_compare.shared.syntactic.Token
type, to allow at least some of the extra information produced by the LX-
Tokenizer tool to be stored as additional attributes. Some of this
information is required as input to the LX-Tagger tool, which will be
wrapped during the second phase of implementation. Thus, in order to be
able to create workflows that include the LX-Tagger, the extra information
produced by the LX-Tokenizer must be stored within the UIMA CAS.
Implementation details/issues: The tool is implemented as a web
service, LXService. In order to implement the U-Compare component, the
web service is invoked through a package, available as lxServiceClient.jar,
which must be placed in the classpath of U-Compare. Its constructor
requires one parameter related to the authentication of the client, namely
the client’s username, as this is registered at the LXService database of
clients. We have created a new user in this database for U-Compare. The
output of the call to web service is then converted to the format required
by U-Compare.
NOTE: Whilst this component is correcly wrapped, and works perfectly
when U-Compare is started from within the Eclipse programming
environment (which partners have been encouraged to use to develop
their code), it currently does not work when U-Compare is started
independently of Eclipse. This is due to the same bug in U-Compare that
was described for the LX-Chunker tool, described above. Therefore, in the
same way as for that tool, we do not currently include it in any importable
workflows, but still provide the jar file for the individual component.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

22	

METANET4U,	 Project	 CIP	 #270893	 	 	

5.2 IST – Instituto Superior Técnico

No components have been wrapped yet. The E-TXT2DB will be wrapped a
U-Compare component during the second phase of the implementation.

5.3 University of Manchester – UNIMAN

Tools	
	

NEMine

Description: Detects gene and protein names in text
Languages covered: English
Input: Sentences
Original resource implementation: Web service
U-Compare input type: org.u_compare.shared.syntactic.Sentence
Output: Protein and Gene named entities
U-Compare output type:
uk.ac.nactem.nemine.NeMineProtein [subtype of
org.u_compare.shared.semantic.bio.protein]
uk.ac.nactem.nemine.NeMineGene [subtype of
org.u_compare.shared.semantic.bio.gene]
U-Compare type details: The output types are subtypes of existing
types in the U-Compare type system. These are retained for historical
reasons but do not affect the interoperability of the tool with other
components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

	

STEPP tagger (with tokenization) (previously wrapped)

Description: POS tagger, tuned to biomedical text
Languages covered: English
Original resource implementation: Web service
Input: Sentences
U-Compare input type: org.u_compare.shared.syntactic.Sentence
Output: POS tagged tokens
U-Compare output type:
jp.ac.u_tokyo.s.is.www_tsujii.tools.stepptagger.SteppToken
[subtype of org.u_compare.shared.syntactic.POSToken]

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

23	

METANET4U,	 Project	 CIP	 #270893	 	 	

U-Compare type details: The output type is a subtype of an existing
type in the U-Compare type system, as indicated. The type used is
retained for historical reasons but does not affect the interoperability of
the tool with other components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.
	

STEPP tagger (no tokenization) (previously wrapped)

Description: POS tagger, tuned to biomedical text
Languages covered: English
Original resource implementation: Web service
Input: Tokens
U-Compare input type: org.u_compare.shared.syntactic.Token
Output: POS tagged tokens
U-Compare output type:
jp.ac.u_tokyo.s.is.www_tsujii.tools.stepptagger.SteppToken
[subtype of org.u_compare.shared.syntactic.POSToken]
U-Compare type details: The output type is a subtype of an existing
type in the U-Compare type system, as indicated. The type used is
retained for historical reasons but does not affect the interoperability of
the tool with other components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.
	

NaCTeM sentence breaker (previously wrapped)

Description: Detects sentence boundaries using heuristic rules
Languages covered: English
Original resource implementation: Java application
Input: Plain text
U-Compare input type: N/A
Output: Sentences
U-Compare output type: org.u_compare.shared.syntactic.Sentence
U-Compare type details: The core U-compare type is sufficient for the
output of this tool, without any need for extension.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.
	

	

	

	

	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

24	

METANET4U,	 Project	 CIP	 #270893	 	 	

GENIA tagger (with tokenization) (previously wrapped)

Description: Performs tokenisation, POS tagging, lemmatization,
syntactic chunking and named entity recognition. Tuned for biomedical
text
Languages covered: English
Original resource implementation: Web service
Input: Sentences
U-Compare input type: org.u_compare.shared.syntactic.Sentence
Output: Tokens with pos tags and base forms, syntactic chunks, named
entities
U-Compare output type:
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaToken
[subtype of org.u_compare.shared.syntactic.RichToken],
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaProtein
[subtype of org.u_compare.shared.semantic.bio.protein],
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaRNA
[subtype of org.u_compare.shared.semantic.bio.RNA],
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaCellLine
[subtype of org.u_compare.shared.semantic.bio.CellLine]
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaCellType
[subtype of org.u_compare.shared.semantic.bio.CellType]
U-Compare type details: The output types are subtypes of existing
types in the U-Compare type system. These are retained for historical
reasons but do not affect the interoperability of the tool with other
components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

GENIA tagger (no tokenization) (previously wrapped)

Description: Performs tokenization, POS tagging, lemmatization,
syntactic chunking and named entity recognition. Tuned for biomedical
text
Languages covered: English
Original resource implementation: Web service
Input: Tokens
U-Compare input type: org.u_compare.shared.syntactic.Token
Output: Tokens with pos tags and base forms, syntactic chunks, named
entities
U-Compare output type:
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaToken
[subtype of org.u_compare.shared.syntactic.RichToken],
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaProtein
[subtype of org.u_compare.shared.semantic.bio.protein],

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

25	

METANET4U,	 Project	 CIP	 #270893	 	 	

jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaRNA
[subtype of org.u_compare.shared.semantic.bio.RNA],
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaCellLine
[subtype of org.u_compare.shared.semantic.bio.CellLine]
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniatagger.GeniaCellType
[subtype of org.u_compare.shared.semantic.bio.CellType]
U-Compare type details: The output types are subtypes of existing
types in the U-Compare type system. These are retained for historical
reasons but do not affect the interoperability of the tool with other
components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

GENIA Sentence detector (previously wrapped)

Description: Performs sentence splitting, tuned for biomedical text
Languages covered: English
Input: Plain text
Original resource implementation: Web service
U-Compare input type: N/A
Output: Sentences
U-Compare output type:
jp.ac.u_tokyo.s.is.www_tsujii.tools.geniass.Sentence [subtype of
org.u_compare.shared.syntactic.Sentence]
U-Compare type details: The output type is a subtype of an existing
type in the U-Compare type system, as indicated. The type used is
retained for historical reasons but does not affect the interoperability of
the tool with other components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

NaCTeM Species word detector (previously wrapped)

Description: Detects words that indicate model organisms (e.g. mouse,
human)
Original resource implementation: Web service
Languages covered: English
Input: Sentence split and part-of-speech tagged text
U-Compare input type: org.u_compare.shared.syntactic.Sentence,
org.u_compare.shared.syntactic.POSToken
Output: Species tagged words
U-Compare output type: uk.ac.nactem.semantic.bio.Species [new
subtype of org.u_compare.shared.semantic.NamedEntity]

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

26	

METANET4U,	 Project	 CIP	 #270893	 	 	

U-Compare type details: The type
org.u_compare.shared.semantic.NamedEntity includes several
subtypes corresponding to named entities. However, “species” was not
amongst them. Hence a new subtype was created for this tool. The
extended type allows the id of the species (according to the NCBI
taxonomy of model organisms) to be stored.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

ExtractAbbrev (previoiusly wrapped)

Description: Extracts abbreviations and their definitions from biomedical
text
Languages covered: English
Original resource implementation: Web service
Input: Sentence split and tokenized text, with parts-of-speech assigned
U-Compare input type: org.u_compare.shared.syntactic.Sentence,
org.u_compare.shared.syntactic.POSToken
Output: abbreviations
U-Compare output type: uk.ac.nactem.semantic.Abbreviation
[subtype of org.u_compare.shared.semantic.NamedEntity]
U-Compare type details: The
org.u_compare.shared.semantic.NamedEntity type of the U-compare
type system was extended to handle the output of this tool, i.e, a specific
type of named entity corresponding to abbreviations.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

NaCTeM Species Disambiguator (previously wrapped)

Description: Normalises biological named entity mentions in text to NCBI
Taxomony IDs, which indicate the entities' model organisms
Languages covered: English
Original resource implementation: Web service
Input: Sentence split text, with part of speech and morophlogically
analysed tokens, named entities corresponding to proteins, genes and
RNA and abbreviations
U-Compare input type: org.u_compare.shared.syntactic.Sentence,
org.u_compare.shared.syntactic.RichToken,
org.u_compare.shared.semantic.bio.Protein,
org.u_compare.shared.semantic.bio.Gene,
org.u_compare.shared.semantic.bio.RNA,
uk.ac.nactem.semantic.Abbreviation [subtype of
org.u_compare.shared.semantic.NamedEntity]
Output: Normalised biological entities

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

27	

METANET4U,	 Project	 CIP	 #270893	 	 	

U-Compare output type:
uk.ac.nactem.semantic.bio.SpeciesNormalizedEntity [subtype of
org.u_compare.shared.semantic.NormalizedEntity]
U-Compare type details: The
org.u_compare.shared.semantic.NormalizedEntity type of the U-
compare type system was extended to be specialised for normalised
entities that describe species.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

Enju Parser (previously wrapped)

Description: HPSG parser
Languages covered: English
Original resource implementation: Web service
Input: Sentence split and tokenized text, with parts-of-speech assigned
U-Compare input type: org.u_compare.shared.syntactic.Sentence
Output: Tokens, Sentences, Constituents
U-Compare output type:
jp.ac.u_tokyo.s.is.www_tsujii.tools.enju.EnjuToken [subtype of
org.u_compare.shared.syntactic.Token]
jp.ac.u_tokyo.s.is.www_tsujii.tools.enju.EnjuSentence [subtype
of org.u_compare.shared.syntactic.Sentence]
jp.ac.u_tokyo.s.is.www_tsujii.tools.enju.EnjuConstituent
[subtype of org.u_compare.shared.syntactic.Constituent]
U-Compare type details: The output types are subtypes of existing
types in the U-Compare type system, as indicated. The types used are
retained for historical reasons but do not affect the interoperability of the
tool with other components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

OpenNLP Sentence detector (previously wrapped)

Description: Detects sentences in plain text
Languages covered: English
Original resource implementation: The sentence detector had
previously been wrapped as a UIMA component, but using the OpenNLP
Wrapper Type System. Thus, type conversion was required to comply with
the U-Compare type system.
Input: Plain text
U-Compare input type: N/A
Output: Sentences
U-Compare output type:
org.u_compare.shared.syntactic.Sentence.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

28	

METANET4U,	 Project	 CIP	 #270893	 	 	

U-Compare type details: This original U-Compare type is sufficient to
encode the output of this tool.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

OpenNLP Tokenizer (previously wrapped)

Description: Splits sentences into tokens
Languages covered: English
Original resource implementation: The tokenizer had previously been
wrapped as a UIMA component, but using the OpenNLP Wrapper Type
System. Thus, type conversion was required to comply with the U-
Compare type system.
Input: Plain text
U-Compare input type: org.u_compare.shared.syntactic.Sentence
Output: Sentences
U-Compare output type:
jp.ac.u_tokyo.s.is.www_tsujii.tools.opennlp.Token [subtype of
org.u_compare.shared.syntactic.Token]
U-Compare type details: The output type is a subtype of an existing
type in the U-Compare type system, as indicated. The type used is
retained for historical reasons but does not affect the interoperability of
the tool with other components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

OpenNLP POS tagger (previously wrapped)

Description: Performs POS tagging
Languages covered: English
Original resource implementation: The tagger had previously been
wrapped as a UIMA component, but using the OpenNLP Wrapper Type
System. Thus, type conversion was required to comply with the U-
Compare type system
Input: Sentences, tokens
U-Compare input type: org.u_compare.shared.syntactic.Sentence,
org.u_compare.shared.syntactic.Token
Output: Tokens with pos tags and base forms
U-Compare output type:
jp.ac.u_tokyo.s.is.www_tsujii.tools.opennlp.POSToken [subtype of
org.u_compare.shared.syntactic.POSToken].
U-Compare type details: The output type is a subtype of an existing
type in the U-Compare type system, as indicated. The type used is

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

29	

METANET4U,	 Project	 CIP	 #270893	 	 	

retained for historical reasons but does not affect the interoperability of
the tool with other components.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

Morpha (previously wrapped)

Description: Returns lemma and inflection type of a word, given part of
speech
Languages covered: English
Original resource implementation: Web service
Input: Sentences, tokens with parts-of speech attached
U-Compare input type: org.u_compare.shared.syntactic.Sentence,
org.u_compare.shared.syntactic.POSToken
Output: Tokens with morphological analyses attached
U-Compare output type:
org.u_compare.shared.syntactic.RichToken
U-Compare type details: This original U-Compare type is sufficient to
encode the output of this tool.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project.

Stanford Parser (previously wrapped)

Description: Syntactic parser
Languages covered: English
Original resource implementation: Web service
Input: Sentences
U-Compare input type: org.u_compare.shared.syntactic.Sentence
Output: POS tags and dependency parsing
U-Compare output type:
org.u_compare.shared.syntactic.StanfordDependency,
org.u_compare.shared.syntactic.POSToken
U-Compare type details: These original U-Compare types are sufficient
to encode the output of this tool.
Implementation details/issues: Not applicable. Tool wrapped as a U-
Compare component prior to the start of the project

Apertium Morphological Analyser

Description: Tokenises text and assigns one or more possible part-of-
speech-tags/morphological analyses to each token.
Languages covered: English, Portuguese, Spanish, Catalan, Galician,
Basque, Romanian

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

30	

METANET4U,	 Project	 CIP	 #270893	 	 	

Original resource implementation: Java port of original C++ code.
Input: Plain text
U-Compare input type: N/A
Output: One or more morphological analyses for each token, consisting of
part-of-speech tags, together with morphological information, such as
base form, person, number and gender.
U-Compare output type:
org.u_compare.shared.syntactic.ApertiumToken [subtype of
org.u_compare.shared.syntactic.POSToken]
U-Compare type details: The type
org.u_compare.shared.syntactic.POSToken has been extended to
allow the additional morphological information produced by the Apertium
morphological analyser to be stored.
Implementation details/issues: This is one module of the Apertium
machine translation system (third-party, open-source software). In D2.2,
we originally envisaged one component that would perform both
morphological analysis and part-of-speech tagging. However, in the
implementation, we have followed the modular structure of Apertium, and
created two separate components. The wrapped component can operate
on any language for which the linguistic data file is available for download
from Apertium. The languages listed above are those which are relevant
to the countries involved in METANET4U, although several other languages
are available. The analysis language is determined according to the data
file provided as an argument. In the UIMA component, this is determined
simply by setting a parameter. Whilst the UIMA component is fully
operational, we have found during the wrapping process several bugs in
the Java port of Apertium. Such bugs include the inability to handle
slashes or blank lines in the input. Our wrapped UIMA component catches
and handles these errors. In the second phase of the implementation, we
will test the module more thoroughly to more fully determine and handle
further bugs in the Java version of Apertium.

Apertium Tagger

Description: Determines the most appropriate part-of-speech
tag/morphological analysis for each token in a text, from amongst
possible analyses output by the Apertium morphological analyser module
(see above)
Languages covered: English, Portuguese, Spanish, Catalan, Galician,
Basque, Romanian
Original resource implementation: Java port of original C++ code.
Input: Plain text
U-Compare input type: N/A
Output: One or more morphological analyses for each token, consisting of
part-of-speech tags, together with morphological information, such as
base form, person, number and gender.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

31	

METANET4U,	 Project	 CIP	 #270893	 	 	

U-Compare output type:
org.u_compare.shared.syntactic.ApertiumToken [subtype of
org.u_compare.shared.syntactic.POSToken]
U-Compare type details: The type
org.u_compare.shared.syntactic.POSToken has been extended to
allow the additional morphological information produced by the Apertium
morphological analyser to be stored.
Implementation details/issues: This is one module of the Apertium
machine translation system (third-party, open-source software). The
wrapped component can operate on any language for which the linguistic
data file is available is Apertium. The languages listed above are those
which are relevant to the countries involved in METANET4U, although
several other languages are available. The analysis language is
determined according to the data file provided as an argument. In the
UIMA component, this is determined simply by setting a parameter. A
further parameter allows tagger options to be specified.

	

5.4 University Alexandru Ioan Cuza (UAIC)
	

Tools	
	

Tokenizer-UAIC

Description: Basic tokenizer
Languages covered: Most European languages (may have trouble with
Spanish and unusual diacritics).
NOTE: This tool thus has wider coverage than was originally reported in
D2.2, where it was stated that the tool only works for English and
Romanian.
Original resource implementation: Perl program
Input: Plain text
U-Compare input type: N/A
Output: Tokens
U-Compare output type:
org.u_compare.shared.syntactic.Sentence.
U-Compare type details: This is originally planned output type. The
existing U-compare type is sufficient for the output of this tool, without
any need for extension.
Implementation details/issues: The original Perl program was re-
implemented in Java, to facilitate easier wrapping as a UIMA component.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

32	

METANET4U,	 Project	 CIP	 #270893	 	 	

Lemmatizer-UAIC-v1

Description: Determines base form for tokens. The performance is only
slightly inferior (approximately 99% as accurate) to Lemmatizer-UAIC-v2
(which takes POS-tagged input).
Languages covered: Romanian, UTF-8 encoding with diacritics.
Original resource implementation: Java application
Input: POS tagged, tokenized text
U-Compare input type: org.u_compare.shared.syntactic.Token
Output: Lemmatized tokens
U-Compare output type:
org.u_compare.shared.syntactic.RichToken
U-Compare type details: These are the originally planned input/output
types. The existing U-Compare types are sufficient for the input/output of
this tool, without any need for extension.
Implementation details/issues: The original Perl program was re-
implemented in Java, to facilitate easier wrapping as a UIMA component,
given that Java is the most straightforward language to use to perform
the wrapping.

Lemmatizer-UAIC-v2

Description: Determines base form for tokens, using POS-tagged tokens
as input. This is the lemmatizer tool described in D.2.2.
Languages covered: Romanian, UTF-8 encoding with diacritics.
Original resource implementation: Java application
Input: POS tagged, tokenized text
U-Compare input type: org.u_compare.shared.syntactic.POSToken
Output: Lemmatized tokens
U-Compare output type:
org.u_compare.shared.syntactic.RichToken
U-Compare type details: These are the originally planned input/output
types. The existing U-Compare types are sufficient for the input/output of
this tool, without any need for extension.
Implementation details/issues: The original Perl program was re-
implemented in Java, to facilitate easier wrapping as a UIMA component.

5.5 RACAI – Romanian Academy

Tools	
	

The tool components being made available by RACAI are built based on
TTL, a Perl module that performs sentence splitting, tokenization, POS

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

33	

METANET4U,	 Project	 CIP	 #270893	 	 	

tagging, lemmatization and chunking (shallow parsing without phrase
attachment and no recursive structures). It is largely described in Ion
(2007). To be readily used in other programming languages for different
NLP applications, TTL has been wrapped as a SOAP web service hosted by
the Apache httpd web server (http://httpd.apache.org/). The WSDL of this
web service is located at http://ws.racai.ro/ttlws.wsdl and the whole
enterprise is described in (Tufiș et al., 2008). We implemented an
Annotation Engine (AE in UIMA’s terminology) for each operation that is
exported by the TTL web service: sentence splitting and tokenization
(bundled because the sentence splitter offers some information to the
tokenizer that cannot be ignored/lost), POS tagging, lemmatization and
chunking.

In all cases, the language of analysis is determined by the setting the
“language” attribute, which is available in U-Compare’s “Input Text
Reader” and “File System Collection Reader”, as either “en”, “ro” or “fr”,
as all components can operate in English, Romanian or French.

The typical workflow using the TTL’s UIMA components is: TTL-Tokenizer,
TTL-POSTagger, TTL-Lemmatizer and TTL-Chunker. The chain may be
interrupted at any point with the condition that the order and the
progression of the elements is not changed.

	

TTL-Tokenizer

Description: Performs tokenization and sentence splitting.
NOTE: In D2.2, the functionality of this component was stated only as
tokenization. However, sentence splitting functionality is also included.
This is because the tokenizer requires some information about sentences
in order to run correctly. Additionally, contrary to what was stated in
D2.2, the input is plain text, rather than sentence annotations.
Languages covered: Romanian, English, French
Original resource implementation: Perl
Input: Plain Text
U-Compare input type: N/A
Output: Tokens and sentence
U-Compare output type: org.u_compare.shared.syntactic.Sentence
,org.u_compare.shared.syntactic.RichToken
U-Compare type details: As mentioned above, sentences as well as
tokens are output. In the case of tokens, the RichToken is used, because
in some cases, the POS and lemma can be determined prior to running
the POS tagger. These are stored in the posString and base attributes,
respectively.
Implementation details/issues: UIMA wrapper around the web service,
as described above. The tool uses precompiled lists of abbreviations (e.g.
“etc.”, “i.e.”, “b.c.” and so on) and multi-words expressions (e.g. “that is”,

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

34	

METANET4U,	 Project	 CIP	 #270893	 	 	

“as long as”, “as soon as”, etc.), so as not to break textual units at
inappropriate places.

TTL-Tagger

Description: Part-of-speech tagger
Languages covered: Romanian, English, French
Original resource implementation: Perl
Input: Sentences, tokens
U-Compare input type: org.u_compare.shared.syntactic.Sentence
,org.u_compare.shared.syntactic.RichToken
Output: POS tagged tokens
U-Compare output type:
org.u_compare.shared.syntactic.RichToken
U-Compare type details: The RichTokens used as input may already
have certain POS and lemmas assigned by the TTL-Tokenizer. This
component updates the RichTokens so that each has a part-of-speech
assigned, in the posString attribute.
Implementation details/issues: UIMA wrapper around the web service,
as described above. POS tagging follows he HMM model described by
Brants (2000) but modified in order to improve the tagging of unknown
words.

TTL-Lemmatizer

Description: Finds base forms of tokens
Languages covered: Romanian, English, French
Original resource implementation: Perl
Input: POS-tagged tokens
U-Compare input type: org.u_compare.shared.syntactic.Sentence
,org.u_compare.shared.syntactic.RichToken
Output: Tokens with base forms added
U-Compare output type:
org.u_compare.shared.syntactic.RichToken
U-Compare type details: The RichTokens used as input may already
have certain POS and lemmas assigned by the TTL-Tokenizer. This
component updates the RichTokens so that each has a lemma assigned,
in the base attribute.
Implementation details/issues: UIMA wrapper around the web service,
as described above. Lemmatization is carried out through the use of an
existing lexicon which stores for each word form, its lemma and its POS
tag. When the word cannot be found in the dictionary, a list of
automatically learned rules that transform from the word form to lemma
comes into play, and a statistical choice is made to select one of the
candidate lemmas.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

35	

METANET4U,	 Project	 CIP	 #270893	 	 	

TTL-Chunker

Description: Identifies syntactic chunks
Languages covered: Romanian, English, French
Original resource implementation: Perl
Input: POS-tagged and lemmatized tokens
U-Compare input type: org.u_compare.shared.syntactic.Sentence
,org.u_compare.shared.syntactic.RichToken
Output: Syntactic chunks
U-Compare output type:
org.u_compare.shared.syntactic.Constituent
U-Compare type details: These are the originally planned input/output
types. The existing U-Compare types are sufficient for the input/output of
this tool, without any need for extension.
Implementation details/issues: UIMA wrapper around the web service,
as described above. Chunking is carried out using regular expressions
defined over sequences of POS tags. Spans of text are thus identified that
represent a noun phrase, a verb phrase, a prepositional phrase and an
adjectival/adverbial phrase.

5.6 University of Malta (UOM)

Tools	
	
MLRS Paragraph Splitter
Description: Identifies the paragraphs in a given text, creating an
annotation for each paragraph.
Languages covered: Language independent
Original resource implementation: Java application
Input: Plain text
U-Compare input type: N/A
Output: Paragraphs
U-Compare output type:
org.u_compare.shared.document.text.Paragraph.
U-Compare type details: This is originally planned output type. The
existing U-compare type is sufficient for the output of this tool, without
any need for extension.
Implementation details/issues: No problems encountered -
straightforward wrapping, given compatibility between original
implementation language and UIMA.

MLRS Sentence Splitter
Description: Identifies	 the	 sentences	 in	 a	 given	 text,	 creating	 an	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

36	

METANET4U,	 Project	 CIP	 #270893	 	 	

annotation	 for	 each	 identified	 sentence.
Languages covered: Language independent – tweaked to facilitate
better performance on Maltese text.
Original resource implementation: Java application
Input: Plain text
U-Compare input type: N/A
Output: Sentences
U-Compare output type:
org.u_compare.shared.syntactic.Sentence.
U-Compare type details: This is originally planned output type. The
existing U-compare type is sufficient to encode the output of this tool,
without any need for extension.
Implementation details/issues: In D2.2, it was specified that this tool
required paragraph annotations as input. In fact, there are different
versions of the tool. The one that has currently been wrapped as a UIMA
component works on raw text. However, an alternative version of the
component, that accepts paragraph annotations as input, will also be
created and tested during the second phase of the implementation.
Experiments will be undertaken to determine whether a workflow
consisting of paragraph breaking followed by sentence splitting produces
different results to those achieved by applying the sentence splitter
directly to raw text. The wrapping of the tool was fairly straightforward,
given compatibility between original implementation language and UIMA.

MLRS Maltese Tokenizer
Description: Designed to tokenize Maltese text. In written texts, tokens
are:

• orthographic words (i.e. words between spaces)
• elements attached to words between spaces, but separated from

them by:
o an apostrophe
o a hyphen

• punctuation

Languages covered: Maltese
Original resource implementation: Java application
Input: Plain text
U-Compare input type: N/A
Output: Tokens
U-Compare output type:
org.u_compare.shared.document.text.Token.
U-Compare type details: This is originally planned output type. The
existing U-Compare type is sufficient to encode the output of this tool,
without any need for extension.
Implementation details/issues: In D2.2, it was specified that this tool

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

37	

METANET4U,	 Project	 CIP	 #270893	 	 	

required sentence annotations as input. In fact, there are different
versions of the tool. The one that has currently been wrapped as a UIMA
component works on raw text. However, an alternative version of the
component, that accepts as input sentence annotations, will also be
created and tested during the second phase of the implementation.
Experiments will be undertaken to determine whether a workflow
consisting of sentence splitting followed by tokenization produces different
results to those achieved by applying the sentence splitter directly to raw
text. The wrapping of the tool was fairly straightforward, given
compatibility between original implementation language and UIMA.

5.7 UPC - Universitat Politècnica de Catalunya

Tools	
	

N-II translation

Description: Statistical machine translation system
Languages covered: English -> Spanish
Original resource implementation: Web service
Input: Plain text
U-Compare input type: N/A
Output: Paragraphs with translations attached
U-Compare output type: cat.talp.metanet4u.nii.Translation
[subtype of org.u_compare.shared.document.text.Paragraph]
U-Compare type details: The currently used output type extends the U-
Compare Document annotation type, since the translation service is
handled paragraph by paragraph. The new, extended subtype includes an
attribute to store the translated text. The current solution is a temporary
one, to allow the component to be tried out in the current version of U-
Compare. The envisaged method of implementation for multilingual
components is for the source language text and target language text to be
treated as different “views” of the document. UIMA provides a mechanism
for this, with each being called a “sofa” (subject of analysis). Currently,
the graphical annotation viewers provided with U-Compare can only
handle a single view of the document. However, work is planned to rectify
this during the lifetime of the project (see section 7), so that multiple
views of a document can be visualised side by side. Once the new
annotation viewer has been implemented, the output of this component
will be changed accordingly.
Implementation details/issues: The currently wrapped component
deals with one direction of translation, i.e., from English to Spanish. The
original web service can, however, deal with translation in the other
direction, i.e., from Spanish to English, as well as Spanish to Catalan, and

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

38	

METANET4U,	 Project	 CIP	 #270893	 	 	

vice versa. These additional capabilities will be added to an updated
version of the component, to be released during the second phase of the
implementation. It is currently intended to allow the user to choose the
language pair and direction of translation by setting parameters in the
configuration of the component. Such configuration can be carried out
easily using the U-Compare interface. The component is accompanied by
2 jar files from the Jersey open source project, jersey-bundle-1.11.jar and
jsr311-api-1.1.1.jar, which must also be added to the U-Compare
classpath in order for the component to work (to allow web services to be
called). The component itself works by calling two web services: the first
is used to request a translation, in response to which a translation ID is
returned. The second web service allows a translation with a given ID to
be requested. The component splits the input into paragraphs, requests
translations for all the paragraphs, and then requests the translation
results in the same order.

5.8 UPF- Universitat Pompeu Fabra
	
The main involvement of UPF is in the PANACEA workflow system.
However, it is hoped in the second phase of the implementation to be able
to make available some of their PANACEA web services as U-Compare
components, as these provide a basic set of processing tools for the
Spanish and Catalan languages, including tokenization, morphological
analysis, tagging and parsing. These web services were described in
Deliverable 2.2.

6 Workflows
The components that have been wrapped as U-Compare components, as
detailed in the last section, can currently be combined together into
workflows to perform 10 out of the 26 NLP tasks that were determined in
Deliverable 2.2. Several of these workflows can operate on multiple
languages and can use various combinations of components developed by
different partners. As mentioned above, the workflows that can be
constructed at this point generally correspond to simpler tasks, which will
often form part of the more complex tasks that will be possible to perform
by the end of the second implementation phase.

For most workflows, a potentially large number of “paths” through the
workflow are possible, given that multiple components can be substituted
at each step. In D2.2, a set of conceptual diagrams were shown, which
illustrated all possible paths though these 26 tasks, using the components
that are planned to be made available during the METANET4U project,
showing which components could be used to move from one state of the

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

39	

METANET4U,	 Project	 CIP	 #270893	 	 	

workflow to the next (e.g., to move from sentence annotations to token
annotations) for various different languages. Therefore, for each task, a
potentially very large number of workflows would be possible by choosing
different possible components at each stage of the workflow.

As has been illustrated above, workflows can be constructed easily in U-
Compare by dragging components from the library onto the workflow
canvas, in a particular order. Therefore, the diagrams could be used as a
guide to the possible workflows that could be built using the components
that are being made available in METANET4U.

As mentioned above, particular workflows can be exported from U-
Compare as single files (“ucz” or U-Compare zip files). These files contain
details of the components that form the workflow, as well as the jar files
of any user-imported components. This means that users can import and
use the workflows by performing a single operation, even if they have not
previously imported all of the components that are used in the workflow.
Once imported, workflows appear as items in U-Compare’s Workflow
menu, with the prefix “imported”, as shown in Figure 4. Clicking on the
workflow name will cause the workflow canvas to be populated with the
components in the workflow.

Figure 4 Workflow menu showing an imported workflow

As part of this deliverable, we provide a set of sample “implemented”
workflows (i.e, ucz files), which can be imported into U-Compare. These
are provided in addition to the set of jar files corresponding to individual
components, as detailed above. Given the large number of potential
alternative workflows that can be created for each NLP task, using the
components that are being wrapped during METANET4U, we are not
providing an exhaustive set of all possible implemented workflows.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

40	

METANET4U,	 Project	 CIP	 #270893	 	 	

Rather, we include a selection of sample implemented workflows,
consisting of a one at least one workflow for each task-language pair (e.g.
tokenisation-Maltese). Over 25 such sample workflows are currently
available on the METANET4U intranet:
http://metanet4u.eu/intranet/index.php/WPS_-
Webservices%28coord:_Sophia%29#Sample_workflows

The aim of this sample set is to provide a set of easily importable and
immediately usable workflows for different tasks and languages. These
workflows can act as templates that the user can subsequently, change,
extend or configure, by substituting different components. The idea is that
such templates make it easier for users to experiment with different
configurations of workflows, than having to build them from scratch.
Where possible, each sample workflow combines components developed
by different partners, in order to highlight the ease of interoperability that
can be achieved through the use of UIMA wrapping and U-Compare.

On the following pages, conceptual diagrams are shown of the workflows
for which at least one of the potential paths can be constructed, using the
UIMA components that are already available. The general format of these
diagrams is the same as those shown in D2.2, but with certain
differences, to represent changes to the original plans, and to show
workflow paths that are not currently possible.

The circles in the diagrams represent the possible different information
states that can occur between the input information state and the output
information state. Lines represent the possible ways to move between the
information states. Each line is labelled with the individual components
that can be used to produce the information to move between one state
and the next. For example, a part-of-speech tagger can be used to move
from the “token” state to the “POS” state. Each resource is represented in
the diagrams as a number, with a full description in the legend, as
follows:

<partner_short_name>:<tool_name>:<languages_covered>

For example, ULX:Chunker:pt, represents the chunker tool developed by
the University of Lisbon, which works on the Portuguese language.

Each workflow diagram shows all possible tools that can be used to carry
out each step of the processing in all of the available languages. Only if
the complete workflow can be carried out for a particular language are the
tools for that language displayed in the diagram. For example,
lemmatization is not currently possible for Portuguese, and so no
Portuguese tools are shown in the lemmatization workflow, even though
most of the intermediate steps can be carried out using Portuguese tools.
This makes it straightforward to determine exactly which types of
workflow are currently possible for each language.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

41	

METANET4U,	 Project	 CIP	 #270893	 	 	

In the diagrams, some lines skip individual states. This is because of the
different processing capabilities of different tools. For example, some part-
of-speech taggers may require tokenized text as input, whilst other
taggers may operate directly on plain text, and perform tokenization as an
integral part of the tool.

In this deliverable, the diagrams have been altered from those shown in
D2.2, in order to illustrate:

• Which of the originally planned paths through the workflows are
currently possible, according to the resources that have already
been wrapped as UIMA components. In the diagrams, resources that
have not yet been wrapped as UIMA components are shown in red
text. Additionally, any transitions between information states that
are not currently possible at all (due to a lack of available wrapped
components) are indicated using grey arrows between the
information states.

• For which of the originally planned languages the workflow can
currently be completed. Languages that are not currently possible
are shown in red.

• Any changes to the workflow that have occurred since the planning
phase. In the case that extra components (or versions or
components) have been wrapped during the implementation phase,
these are highlighted in bold face, both in the legend and in the
diagrams. In the case that the languages that can be handled by a
component have changed since the planning phase, only the
language elements of the component specification is emboldened.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

42	

METANET4U,	 Project	 CIP	 #270893	 	 	

 	 	

Key	

Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
	

Paragraph	 breaking	
Purpose:	 Identifies	 paragraphs	 in	
plain	 text	
Languages:	 Any	

	

Resources	
	
1	 -‐	 ULX:	 Chunker:	 pt	
2	 -‐	 UOM:	 MLRS	 Paragraph	 breaker:	
All	
3	 -‐	 UPF:	 IULA_preprocess:	 es,ca	
	

	
	
	
	

	

	

	
	

	

Par
a

Txt

1,2,3	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

43	

METANET4U,	 Project	 CIP	 #270893	 	 	

	
	 	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
	

Sentence	 splitting	
Purpose:	 Identifies	 individual	
sentences	 in	 plain	 text	
Languages:	 All	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 ULX:	 Chunker:	 pt	
3	 -‐	 UOM:	 Paragraph	 breaker:	 Any	
4	 -‐	 UPF:	 IULA_preprocess:	 es,ca	
5	 -‐	 UNIMAN:	 GENIA	 sentence	 splitter:en	
6	 -‐	 UNIMAN:	 OpenNLP	 sentence	 detector:	
en	
7	 -‐	 UNIMAN:	 NaCTeM	 Sentence	 Breaker:	
en	
8	 -‐	 UOM:	 MLRS	 Sentence	 Splitter:	 Any	
9	 -‐	 RACAI:TTL-‐Tokenizer:ro,	 en,	 fr	
10	 -‐	 UOM:	 Sentence	 Splitter	 (raw	 text):	
Any	
	
	
	
	
	

	
	
	
	

	

	

	
	

	

3	

2,4,5,6,7,9,10	
Par
a

Txt

Sen
t

Lan
g 1	

8	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

44	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	

	

	 	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
	

Tokenization	
Purpose:	 Identifies	 individual	 tokens	
in	 plain	 text	
Languages:	 Any	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 UOM:Paragraph	 Breaker:Any	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 ULX:	 Chunker:	 pt	
9	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
11	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
13	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
14	 -‐UPF:	 freeling_tokenizer:	 es,ca	
15	 -‐UPF:	 iula_tokenizer:	 es,ca	
16	 -‐UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,es,ca,pt,gl,eu,ro	
17	 -‐UOM:	 MLRS	 Tokenizer:mt	
18	 -‐ULX:	 Tokenizer:pt	
19	 –	 UOM:	 MLRS	 Sentence	 Splitter	 (raw	
text):Any	
20-‐	 UOM:	 MLRS	 Tokenizer	 (raw	 text):mt	
	

	

	
	
	
	

	

	

Tok

Par
a

Sen
t

Txt Lan
g

1	

2	

3	

7,13,14,15,16,20	

4,5,6,7,8,19	

9,10,11,7,17,18	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

45	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	

	

	 	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	
annotations	
	
	

Part-‐of-‐speech	 tagging	
Purpose:	 Identifies	 individual	 tokens	
in	 plain	 text	 and	 assigns	 parts-‐of-‐
speech	 to	 them	
Languages:En,	 Es,	 Ca,	 Pt,	 Gl,	 Eu,	 Ro,	
Fr,	 Mt	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 UOM:MLRS	 Paragraph	 Breaker:Any	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UPF:	 iula_tokenizer:	 es,ca	
16	 -‐	 UPF:	 freeling_tokenizer:	 es,ca	
17	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,pt,ro	
18	 -‐	 UOM:	 Tokenizer:mt	
19	 -‐	 ULX:	 Tokenizer:pt	
20	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
21	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
22	 -‐UPF:	 freeling_tagging:	 es,ca	
23	 -‐UPF:	 iula_tagger:	 es,ca	
24	 -‐	 UNIMAN:	 Apertium	 Tagger:	
en,es,ca,pt,gl,eu	
25	 -‐	 UOM:	 POS	 Tagger:mt	
26	 -‐	 ULX:	 POS	 Tagger:pt	
27-‐	 ULX:Chunker:pt	
28	 –	 ULX:	 LXTagger:pt	
29	 –	 UOM:MLRS	 Sentence	 Splitter	 (raw	
text):Any	
30	 -‐	 UOM:MLRS	 Tokenizer	 (raw	 text):mt	
	

	
	
	
	

	

	

	
	

Tok

Par
a

Sen
t

Txt
Lan
g

POS

1	

2	

3	

22,23,28	

4,	 5,	 6,	 7,	 27,	 29	

8,	 9	

7,14,15,16,17,3
0	

8,9,12,7,18,19	

10,11,20,21,24,25,26	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

46	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	

	

	 	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	
annotations	
Lem	 –	 Lemma	 annotations	
	
	

Lemmatization	
Purpose:	 Identifies	 individual	 tokens	 in	 plain	
text	 and	 assigns	 lemma	 information	 to	 them	
Languages:En,	 Es,	 Ca,	 Pt,	 Gl,	 Eu,	 Ro,	 Fr.	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 UOM:MLRS	 Paragraph	 Breaker:Any	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,es,ca,pt,gl,eu	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,fr	
19-‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
20	 -‐	 UNIMAN:morpha:en	
21	 -‐	 UPF:	 freeling_morpho:	 es,ca	
22	 -‐UNIMAN:	 Apertium	 Tagger:	
en,es,ca,pt,gl,eu	
23	 –	 UOM:MLRS	 Sentence	 Splitter	 (raw	
text):Any	
24-‐	 	 UAIC:	 Lemmatizer-‐UAIC_v1:	 ro	
	
	

	

	
	
	
	

	

	

	
	

	 Le
m

Tok

Par
a

Sen
t

Txt Lan
g

POS

1	

3	 7,14,15	

8,9	

21	

2	

10,	 22,24	

4,5,6,7,	 23	

8	

8,9,12,7	

10,11,16,17,22	

10,18,19,20	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

47	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	 Syntactic	 chunking	
Purpose:	 Identifies	 syntactic	 chunks	 in	 plain	
text	
Languages:En,	 Ro,	 Fr.	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 UOM:MLRS	 Paragraph	 Breaker:Any	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 RACAI:TTL-‐Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,ro	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,fr	
19	 -‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
20	 -‐	 UNIMAN:morpha:en	
21	 -‐	 RACAI:	 TTL	 Chunker:	 ro,en,fr	
22	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en,ro	
23	 –	 UOM:MLRS	 Sentence	 Splitter	 (raw	
text):Any	
	

	

	

	

	
	
	
	

	

	

	
	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Lem	 –	 Lemma	 annotations	
Chnk	 –	 Syntactic	 chunk	
annotations	
	

Lan
g

Chn
k

Le
m

Tok

Par
a

Sen
t

Txt

POS

1	

3	

21	

4,5,6,7,23	

2	

7,14,15	

10,22,23	

8,9,12,7	

8	

8	

10,18,19,20	

8,9	

10,11,16,17,22	

10	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

48	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Syntactic	 parsing	
Purpose:	 Performs	 syntactic	 parsing	 	 on	 plain	
text	
Languages:En,	 Es,	 Ca,	 Ro.	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 UOM:MLRS	 Paragraph	 Breaker:Any	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 RACAI:TTL	 Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,ro	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18-‐	 UNIMAN:	 Enju	 Parser	 (HPSG):	 en	
19	 -‐	 UAIC:	 FDG-‐Parser-‐UAIC:ro	
20	 -‐	 UNIMAN:	 Stanford	 Parser:en	
21	 -‐	 UPF:	 freeling_parsed:	 es,ca	
22	 -‐	 UPF:	 freeling_dependency:	 es,ca	
23	 –	 UOM:MLRS	 Sentence	 Splitter	 (raw	
text):Any	
24	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en,ro	
	
	
	

	
	
	
	

	

	

	
	

	

Parse

Tok

Par
a

Sen
t

Txt Lan
g

POS

1	

3	

18,19,	 20	

4,5,6,7,23	

7,14,15	

8,9,12,7	

10,11,16,17,24	

20,21,22	

8,9	

2	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Lem	 –	 Lemma	 annotations	
Parse	 –	 Syntactic	 parse	 annotations	
	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

49	

METANET4U,	 Project	 CIP	 #270893	 	 	

	

	

	

	 	

NP	 chunking	
Purpose:	 Identifies	 noun	 phrase	 chunks	 in	
plain	 text	 	 	
Languages:En	 Ro,	 Fr	

	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 UOM:MLRS	 Paragraph	 Breaker:Any	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 RACAI:TTL	 Tokenizer:ro,en,fr	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
13	 -‐	 RACAI:TTL	 Tokenizer:ro,en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,ro	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐UAIC:	 FDG-‐Parser-‐UAIC:ro	
19	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,fr	
20	 -‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
21	 -‐	 UNIMAN:morpha:en	
22	 -‐	 UAIC:	 Splitter-‐UAIC:ro	
23	 –	 UAIC:NP-‐Chunker-‐UAIC:ro	
24	 –	 RACAI:TTL-‐Chunker:ro,en	
25	 -‐	 UNIMAN:	 Apertium	 Tagger:	 en,ro,fr	
	

	
	
	
	

	

	

	
	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part-‐of-‐speech	 annotations	
Lem	 –	 Lemma	 annotations	
Seg	 –	 Segment	 annotations	
FDG-‐	 FDG	 parse	 annotations	
NP	 –	 Noun	 phrase	 annotations	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

50	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Resources	
	
1	 -‐	 UOM:MLRS	 Paragraph	 Breaker:Any	
2	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
3	 -‐UNIMAN:Genia	 Sentence	 Splitter:	 en	
4-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
5	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
6	 -‐	 RACAI:TTL-‐Tokenizer:en	
7	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
8	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
10	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
12	 -‐	 RACAI:TTL	 Tokenizer:en	
13	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
14	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	 en	
15	 -‐	 	 UNIMAN:NEMine:en	
16	 -‐	 IST:Named	 Entity	 Recognizer:	 trainable	 for	
different	 languages	
23	 –	 UOM:Sentence	 Splitter	 (raw	 text):Any	
	
	
	
	

	

	

	
	

	

Named	 entity	 recognition	
Purpose:	 Identifies	 named	 entities	 within	 plain	
text.	 UNIMAN’s	 GENIA	 tagger	 and	 NEMine	
recognise	 biomedical	 named	 entities.	 IST’s	
Named	 Entity	 recognizer	 is	 trainable	 for	
different	 languages	 and	 entity	 types.	 	 	 	
Languages:En	 (biomedical),	 Others	 (using	
IST’s	 NR	 recognizer)	

	

Key	

Lang	 –	 Language	 of	 text	
Txt	 –	 Plain	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
NE	 –	 Named	 Entity	 annotations	

Tok

Par
a

Sen
t

Txt

NE

2	

9	

1	

6,	 13,14	

7,15	

16	

3,4,5,6,23	

6,7,8,11	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

51	

METANET4U,	 Project	 CIP	 #270893	 	 	

	 	

Text	 translation	
Purpose:	 Translates	 text	 from	 one	 language	 to	
another	 	 	 	
Languages	 Pairs:	 En<-‐>Es,	 Ca	 <-‐>Es,	 Es<-‐>Gl,	
Es<-‐>Pt,	 Ro<-‐>Es,	 Eu-‐>Es,	 En<-‐>Gl,	 Pt,-‐>Ca	

	

Key	

Lang	 –	 Language	 of	 text	
Src	 –	 Source	 language	 text	
Para	 –	 Paragraph	 annotations	
Sent	 	 -‐	 Sentence	 annotations	
Tok	 –	 Token	 annotations	
POS	 –	 Part	 of	 speech	 annotations	
Lem	 –	 Lemma	 annotations	
Mrp	 –	 Morphological	 annotations	
Tran	 –	 Translated	 morphological	
structures	
Tgt	 –	 Target	 language	 text	

Resources	
	
1	 -‐	 RACAI:Lang	 Identifier	
2	 -‐	 UOM:MLRS	 Paragraph	 Breaker:Any	
3	 -‐	 UOM:MLRS	 Sentence	 Splitter:Any	
4	 -‐	 UNIMAN:Genia	 Sentence	 Splitter:	 en	
5-‐	 UNIMAN:OpenNLP	 sentence	 detector:	 en	
6	 -‐	 UNIMAN:NaCTeM	 sentence	 breaker:en	
7-‐	 RACAI:	 Sentence	 Splitter:ro,en	
8	 -‐	 UNIMAN:Genia	 Tagger	 (with	 tokenization):	
en	
9	 -‐	 UNIMAN:Stepp	 Tagger	 (with	 tokenization):	
en	
10	 -‐	 UNIMAN:Genia	 Tagger	 	 (no	 tokenization):	
en	
11	 -‐	 UNIMAN:Stepp	 Tagger	 (no	 tokenization):	
en	
12	 -‐	 UNIMAN:OpenNLP	 tokenizer:en	
13	 -‐	 RACAI:TTL	 Tokenizer:ro,en	
14	 -‐	 UAIC:	 TokenizerUAIC:	 Any	
15	 -‐	 UNIMAN:	 Apertium	 Morpho	 Analyser:	
en,es,pt,gl,eu,ro	
16	 -‐	 UNIMAN:OpenNLP	 Tagger:en	
17	 -‐	 RACAI:TTL	 Tagger:ro,en,fr	
18	 -‐	 RACAI:	 TTL	 Lemmatizer:	 ro,en,fr	
19-‐	 UAIC:	 Lemmatizer-‐UAIC:	 ro	
20	 -‐	 UNIMAN:morpha:en	
21	 -‐	 UNIMAN:Apertium	 MT	 transfer:Language	
pairs/directions	 shown	 above	
22	 -‐	 UNIMAN:Morpholoigcal	 generator:	
en,es,pt,gl,eu,ro	
23	 -‐	 UPC:	 N-‐II:	 En<-‐>Es,	 Es<-‐>Ca	
24	 -‐	 ULX:LXTagger:pt	
25	 -‐	 ULX:Pos	 Tagger:pt	
26	 -‐	 ULX:Chunker:pt	
27	 -‐	 ULX:Tokenizer:pt	
28	 -‐	 UPF:freeling_taging:es,ca	
29	 -‐	 UPF:iula_tagger:es,ca	
30-‐	 UPF:	 freeling_morpho:	 es,ca	
31	 -‐	 UNIMAN:	 Apertium	 Tagger:	
en,es,pt,gl,eu,ro	
	
	
	

	

	

	
	

	

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

52	

METANET4U,	 Project	 CIP	 #270893	 	 	

7 Upcoming work
At the end of this first implementation phase, partners who are making
their LRs available as UIMA components have gained experience of the
wrapping procedure, and they are in a good position to start wrapping
their more complex resources during the next 6 month period. We
currently envisage that the remaining 38 LRs will be wrapped during this
period, after which the construction of the remaining 15 workflows will be
made possible, and any gaps in the current functionality of the 10
workflows that can presently be run will be filled in.

In addition to the work on wrapping the components themselves, a
number of possible enhancements to both the U-Compare graphical user
interface and the type system will be investigated, that will result in the
ability to run and visualise more complex workflows. A number of
suggestions for these enhancements were identified as a result of
discussions during the U-Compare meeting organised by UNIMAN and held
in Manchester during M12.

• As mentioned above, our preferred method of implementing multi-
lingual components is to have two “views” of the text (one for the
source language and one for the target language), by using UIMA’s
built-in support for multiple sofas (subjects of analysis). UNIMAN
plans to implement a new annotation viewer, which can display
multiple views of a document side by side. Multiple views of a
document are useful for other types of components as well as multi-
lingual ones. For example, an automatic summarisation tool
(created by UAIC) features amongst the components that are
planned for release during the second implementation phase. A
summary of a text can also be seen as an alternative view of a full
text, and so a multiple sofa annotation viewer would also be useful
in this case.

• U-Compare can currently only handle the construction of workflows
that process one document at time and then move on to the
processing of the next document. That is to say, the annotations in
the UIMA CAS are cleared after the processing of each document is
complete. Whilst this model of execution is suitable for many
simpler types of processing, it cannot support certain more complex
components and workflows. As an example, consider UAIC’s
automatic summarisation tool that was mentioned above. This tool
can provide summaries of individual documents, but it can also
make a single summary of multiple documents. This sort of task
requires merging information from CASes produced for individual
documents in order to create the summary. The UIMA framework
provides more advanced features, called CAS multipliers and CAS
mergers, but these are not currently handled in U-Compare.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

53	

METANET4U,	 Project	 CIP	 #270893	 	 	

UNIMAN will look into the feasibility of handling CAS
multipliers/mergers within U-Compare.

• POS taggers can be made interoperable in the sense that they can
all produce annotations of the type
org.u_compare.shared.syntactic.POSToken (or subtypes) as
output. However, different POS taggers may use different sets of
POS tags, which can still cause problems, e.g., in the comparison of
different taggers. If each tagger uses a different POS tag set, then
how can their outputs usefully be compared? Different tag sets also
pose a problem for interoperability. If we wish to substitute
different POS taggers into a workflow, then we cannot guarantee
that they will produce output that is compatible with subsequent
components in the workflow if they output different tags. In order to
try to ensure more universal interoperability of POS taggers, we
plan to carry out some investigation regarding the extent to which
tags from different sets can be mapped to a common, universal tag
set, and whether such a tag set could be applicable to the different
language in the project.

• We plan to extend the U-Compare type system to cover annotation
types covering not only written language, but additionally speech-
based input and output types. During the second implementation
phase, UPF is intending to make available a text-to-speech
component. In order to make the U-Compare type system as
versatile as possible, data types required to accommodate other
types of speech-based components will also be explored.

• In order to be able to experiment in U-Compare with workflows that
produce speech based output, a new annotation “viewer”
component will have to be implemented that is able to play speech-
based annotations.

8 References
Brants, T. (2000). “TnT – A Statistical Part-of-Speech Tagger.” In
Proceedings of the 6th Applied NLP Conference, ANLP-2000, pages 224–
231.
Ferrucci, D., Lally, A., Gruhl, D., Epstein, E., Schor, M., Murdock, J. W.
(2006). "Towards an Interoperability Standard for Text and Multi-Modal
Analytics". IBM Research Report RC24122.

Ion, R. (2007). Word Sense Disambiguation Methods Applied to English
and Romanian. PhD Thesis, Romanian Academy, May 2007. In Romanian.

Kano, Y., Miwa, M., Cohen, K. B., Hunter, L. E., Ananiadou, S., & Tsujii, J.
(2011). "U-Compare: A modular NLP workflow construction and evaluation
system". IBM Journal of Research and Development, 55(3), 11:11-11:10.

Deliverable	 D4.4:	 First	 version	 of	 pilot	 applications	

54	

METANET4U,	 Project	 CIP	 #270893	 	 	

Kano, Y., Baumgartner, W. A., Jr., McCrohon, L., Ananiadou, S., Cohen, K.
B., Hunter, L. (2009). "U-Compare: share and compare text mining tools
with UIMA". Bioinformatics, vol. 25, no. 15, 1997-1998.

Tufiş, D., Ion, R., Ceauşu, A., and Ştefănescu, D. “RACAI’s Linguistic Web
Services”. In Proceedings of the 6th Language Resources and Evaluation
Conference - LREC 2008, pages 327-333.

	

